個人研究地球環境

CMCの信頼性保証技術の開発

CMCの信頼性保証はCMCを安全安心に使うために非常に重要です。信頼性を保証するために必要な非破壊検査技術、複数の検査手法を併用し、統計処理やAI等を利用して最終的なCMCの要求性能を満足する保証方法、将来の必要になる新たな検査手法の研究を行なっています。

KEYWORDS 二酸化炭素削減、省エネルギー、高温構造材料

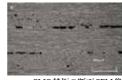
RESEARCHER

片柳研究所 CMC センター 特別研究教授 曽我部智浩

https://www.teu.ac.ip/karl/cmc/

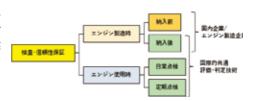
主な学会発表・論文・著書・社会活動

- [1] Phase Relations and Dielectric Properties in the Bi2O3–ZnO–Ta2O5 System, J. Am. Ceram. Soc.,84[11] 2557–62 (2001)
- [2] Structure and Dielectric Properties of Bi Based Pyrochores, 101st Am. Ceram. Soc.1999 annual meeting (1999) Oral Presentation
- [3] Development of the Varistor /Capacitor Co-fired Multilayer Device, The 8th US-Japan Seminar on Dielectric & Piezoelectric Ceramics(1997) Oral Presentation


01 非破壊検査の選択技術

CMCは、今後利用が拡大する材料ですが、 信頼性を保障する検査技術が確立されてい ません。様々な材料を対象として行われて いる非破壊検査技術をCMCへ適用する方 法並びにCMC用の新たな非破壊検査技術 の構築を目指しています。

сисоля	外記場が直内面 (性性点)	解末すべき開題と解ネ方法	接近に対する市理量の存出 (所存集者を決)
体电子连接 D.CHC体系型	対点化理例(理由符 型/フトリックス)	开口室(遺産) 20 SEM 20、X申CT 20	SSM 2D KMCT 3D
○ 打井民官の 東元・初度	CMC特別ののカー ウザル事動及び展力 位(足虫サード)	だガージギみ最初上の重要な特 他の声楽 ・整体実験研集するとには至	X8月レザ・ローデオ計の角板支援性 ロザル曲、クラック管理・長さ
S CNC の分割 基本の表示が い(DEN)	まませー: アクロ家 門・改善事務 よ。二対する保합 (項をで延載を含む)	ま。1キード(有対象とする (モード)とロードリの連由 モード下では経験的あり 関連ではほかいとはレーション の必要性あり)	X連点して・ローデザ計 以角取制工格 連携計画性の様义 マトリックスクキック関連に対
8 #86# 9 9#	特別のようつきの間 工程的なった。	はらつきを無限するための方面 使用権率支払 - フィアルを計を通用し検討) 理事を含む表すがい。	会議力学所当のぼうつき ワイブル確定要を開放 f(g) = py for (a*) よお の 光波 パラメータ ま 元度・サラメータ
STREETS OF S	議事の支票と無数す べる可能算	通用力学に基づく特面要求の設 を 通用力学・1キメークのの場合。	選集: $A \neq F = F$ $D_{ij}(S_{ij}) = \left(1 - \frac{F_{ij}(S_{ij})}{F_{ij}}\right)$ 資本施工、選集と各種力学符度


02 CMCの新しい原理に基づく検査手法

既存の検査手法では得ることのできない損傷の 検出方法の構築を目指しています。特に、高温 下での過酷な環境で使用される航空機エンジン 用CMCでは使用時に物理的な損傷と化学的な 損傷が同時に生じます。この損傷過程は極めて 複雑であり、損傷機構の解明と損傷により発生す るCMC自体の劣化現象及びその力学特性に及 ぼす影響を調べています。また、これらの損傷を 容易に判定するための検出原理と検出原理の実 際の検査方法への適用を検討しています。

CMC 基板の断面 SEM 像 a) 欠陥あり b) 欠陥なし

