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Chapter 1

Introduction

When there is no proper balance between the level of difficulty of a game and its

players, players might have a negative experience and quit playing as a consequence

[1]. If challenges are too difficult to accomplish, players might get frustrated; if

challenges are too easy, players might get bored [2, 3]. In any of these cases, the

impact that a negative experience has in players, can negatively affect game creators

(reputation, sales, etc).

According to the international standard on ergonomics of human-system interac-

tion, ISO 9241-210 [4], user experience (UX) is defined as perceptions and responses

that occur as a result of using a product, system or service. These responses involve

emotions, preferences, perceptions, physical and psychological responses, etc, that are

related to the use of that service or product.

User experience has been widely researched in different fields around the world,

starting from an old research that was presented on the SIGCAPH Computers and

the Physically Handicapped, a study that delved on how to improve the experience

of users with disabilities when using a web page [5], they discussed about how those

users can control and adapt elements from a website for better usability. Some other

notable examples from the past, include the work of Juha Arrasvuori et al. [6], which

explored how users interact with products and as a result, their study would help UX

researchers to focus on the most pleasurable elements from the user experience. There

was a different approach, which aimed to understand how to make an uncomfortable

experience for users and how to avoid doing so [7].

This subject has not only being studied in the past but also nowadays, researchers

put a lot of efforts on finding better ways to offer users a more comfortable experi-

ence. There is a publication from Paul Dourish [8] where he discusses about how

technology and data management have impacted the concept and understanding of

user experience and Human-Computer Interface (HCI). There is also research that
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focuses on the concerns cybersecurity and how this can impact the overall user expe-

rience when using technology and products made by big or small companies [9]; these

researchers also advice people to be more informed in order to have a better end-user

experience, caring about security, personal information and interaction is important.

In addition, there is extensive research about how to effectively measure the user

experience, due to the impact that this has on the success of companies that create

products of services [10]. Evelyn Tio et al., performed a qualitative research about

what really matters to the user, to help teams prioritize what is really important for

their users.

Finally, for the matter of this research, there is the relationship between user

experience and games. From some years ago, we have that user experience started

to be a very important field of study in games, the work of Komulainen et al. [11],

shows that the user experience is defined by four different components: cognition,

motivation, emotion and attention, which served as the based of an empirical model

designed by these researchers to measure UX in games; in addition, the work of Zhan

Ye, showed how using genre theory (widely used in other types of media) to analyze

the user experience in games [12].

From more recent research, there is the work of a group of researchers that focused

on the user experience in serious games [13], that successfully designed and described

how to evaluate the user experience in serious games, specifically, games for learning.

Some other researchers focused on describing the user behavior in mobile gaming [14],

for which they identified ten different solutions that explain the intention of users to

download a mobile game. Lastly, in a combination of interaction, user experience

and immersion, Don D.H. Shin, focused his research on augmented reality (AR) in

videogames. Basically this researcher proposed a model to explain and predict the

user experience of AR in games, as a result, the model successfully measured elements

of engagement and immersion from users [15].

Besides user experience, other researchers have tried Dynamic Difficulty Adjust-

ment to solve this issue of an between skills and challenges [16, 17, 18]. In addition,

Procedural Content Generation has been combined with other techniques to help

adapt the game automatically, depending on how players play at a determined time

[19, 20, 21, 22, 23].

As a motivation for this research, the author wanted to contribute to the field and

improve the game experience for players with different skills, the focus was to help

create games that adapted depending on how players play in order to offer a more

suitable level of difficulty, thus a better overall experience.
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The main purpose was to create novel and effective ways to avoid the gap that oc-

curs between players’ skills and game difficulty. As a natural consequence of adapting

the difficulty according to the player’s skills, the experience as a whole would improve

as well, making it more enjoyable and a better overall experience.

In this manuscript, the definition of better experience or enjoyable experience

is derived from the concept of Flow, stated by the famous psychologist Mihaly

Cśıkszentmihályi in 1975 [24]. When a person is performing an activity, that per-

son is said to be in a flow state or flow zone, when he or she reaches a mental state of

full immersion, completely focused on the current task. In this research, the author

tries to create an experience for players to get closer to the flow state, by encouraging

them to avoid the zones outside the flow zone which are: boredom and frustration

(also called anxiety).

Specific hypotheses for this research are stated as follows:

• Emotions can be predicted using behavioral patterns

• There is a relationship between how players feel while playing and the interac-

tion they have with the controller

• Brain computer interfaces can contribute to the adaptation of games to players

• It is possible to create stages with a specific degree of difficulty

• Dungeon creation techniques can be effectively used to create automatically

generated levels in other genres

Some of these assertions have been partly answered in previous research or there

is evidence that show a tendency to demonstrated they are correct. The aim is to

find clear answers and concrete solutions to each one of these hypotheses.

Starting from the previously mentioned hypotheses, the following goals have been

set:

• Find novel and effective ways to improve the player experience through difficulty

adjustment

• Prove how can emotions be predicted using behavioral patterns

• Propose a concrete method to connect behavioral patterns and player’s emotions

• Evaluate the contribution of brain computer devices on game adaptation
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• Find ways to create levels with a specific degree of difficulty

• Propose a concrete method to use dungeon creation techniques in other genres

• Demonstrate how effective can dungeon creation techniques be when creating

levels for other genres

• Adapt difficulty of a game according to the player’s skills

The content of this thesis is divided by type in two main parts: (A) Behavioral

Patterns, which comprehends chapters: 3 and 4; (B) Dynamic Difficulty Adjustment,

Procedural Content Generation Methods, which comprehends chapters: 5 and 6.

The overall approach for part (A) of the research, was to find a relationship be-

tween players’ behavior and how that behavior is connected to the way they feel while

playing. The main benefit from understanding emotions through physical behavior,

would be to adapt the content of a game to encourage specific emotions of feelings

and then be able to improve the experience as a whole. These two chapters of the

book address the first two hypotheses.

Chapter 3 describes the experiment and how data was collected. A 2D shooting

game was designed to make players interact with the button of a PS3 controller while

shooting, pressure exerted on the button was recorded while playing and participants

were required to answer a questionnaire about their experience while playing and the

emotions they had towards the game in each session. The correlation between the

answers given by players and the pressure exerted on the button was also calculated.

Using the results obtained from the experiment explained in Chapter 3, in order

to find patterns between pressure sensitivity and the player behavior, machine learn-

ing methods such as Neural Networks and Support Vector Machines were tested. The

explanation about how these methods were designed, the simulated conducted and

best parameters are described in Chapter 4.

A natural proposal that arises after finding patterns between the player’s behavior

and his/her feelings is also discussed. A new method that uses the best parameters

obtained from the tested machine learning methods was proposed. After detecting

how players perceive the game in real time and how they feel towards it, one way to

use these results to adapt the game and in consequence, change the experience for

players was explained.

Chapter 5 consists of the explanation of results from combining DDA with at-

tention levels obtained from a biosensor device that players used while performing

experiments. 25 Players played a simple 2D platform game while wearing en EEG
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device that captured the levels of attention they triggered while playing, levels were

then designed according to their performance and those attention levels obtained from

the EEG. In addition, 29 players played the same game, without the EEG compo-

nent, only performance was considered to design levels in real time. In this chapter, it

was demonstrated the importance of including brain computer devices to experience

adaptation.

Chapter 6 describes the results of applying Graph Grammars to 2D platform

games. Graph Grammars is a procedural content generation method originally de-

signed to create dungeons automatically, in this research, it’s used for the creation of

complex multi-path levels, adding variety and diversity to level design in traditional

platform games. 16 players were gathered and played a simple 2D platform game

(Super Mario Bros style), which generated levels in an automatic way with specific

degrees of difficulty. Players then rated the perceived level of difficulty and was then

compared to the one generated by the proposed method. This chapter addresses

the last two hypotheses previously explained: level creation with a specific degree of

difficulty and taking advantage of dungeon creation techniques in other genres.

The following section gives a brief introduction about the general literature review

about the described topics, the last chapters of the manuscript discuss the results of

the overall research and what would be the future steps to improve the current state

of this study.
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Figure 1.1: Research Map. Problem: The imbalance between players’ skills and game
challenges. Motivation: To design better methods to improve the player experience.
Approach: All the methods tested in this research. Goal: Improve the player experi-
ence.
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Chapter 2

Related Work

One of the reasons for imbalance between skills and challenge to exist is the lack

of harmony in game design, which can be solved by changing the rules of the game

and manually adapting its difficulty [1]. The problem with this solution is that not all

players have the same skill set and it’s very difficulty to match every kind of player’s

skills.

A common way to tackle this issue is to include Dynamic Difficulty Adjustment

(DDA) techniques in games [16][17][18]. By doing this, the game adapts itself to the

player, creating a suitable experience regardless the players’ skills.

Dynamic Difficulty Adjustment improves the player experience in different ways

[2, 3] and even in its most basic or elemental form, when done in the appropriate way,

it could successfully adapt the game, making the levels of challenge more suitable for

players.

This method is useful and can be implemented in games from different genres,

from racing games [16], to platform games [19], from multiplayer digital games [17] to

board games [25]; Dynamic Difficulty Adjustment is a method that can be adapted

to each developer’s or designer’s necessities when using the proper approach.

In combination with Dynamic Difficulty Adjustment, techniques such as Proce-

dural Content Generation (PCG) have been used in order to modify the players’

experience in real time [19],[20],[21],[22], [23]. Being able to change the content of the

game on the fly, gives developer a powerful tool to adapt the overall experience for

players, when understanding how a player is performing or what kind of perception he

or she has while playing a game, it is possible to adapt the content using algorithms.

There are active researchers such as Gillian Smith, Noor Shaker, Georgios Yan-

nakakis, etc, who work towards personalizing the player experience automatically

using PCG and Artificial Intelligence (AI) techniques.
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The two following sections of this manuscript, describe the proposed approach

when combining Dynamic Difficulty Adjustment and Procedural Content Generation

methods with Electroencephalographic data and Graph Grammars, which is a PCG

method originally designed for dungeon creation but was tested it in this research

with 2D platform games.

Another perspective to help finding better ways to improve the player’s experience,

is to find patterns on the behavior of players and use them to change the game

accordingly. This is the concept of behavioral patterns and has been used by several

researchers in this topic [26], [27],[28].
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Chapter 3

Behavioral Patterns: Data
Collection

3.1 Introduction

This part of the research was conducted with the guidance of professor Koji

Mikami (supervisor) and professor Kunio Kondo, who supported the author from

the phase of planning and design to implementation and analysis.

In previous sections we have shown the results of different approaches that involve

understanding the players’ results and status when playing, analyzing it and changing

the difficulty of games accordingly. For this part of the research, we decided to explore

a different strategy towards finding solutions for our overall goal of improving the

player’s experience.

Understanding players’ feelings, reactions against specific stimuli and how they

behave when playing, would be useful when dynamically modifying and adapting a

game in real time. This argument led us to delve in the behavioral patterns field.

A three general steps plan was designed to conduct this study: (1)data collection,

(2)classification methods and (3)difficulty adaptation. Data collection was carried out

using a 2D shooting game and questionnaires for feedback and perception evaluation.

From the collected data, we designed machine learning methods: Neural Networks

and Support Vector Machines, to find a relationship between the pressure exerted

on the button of the controller and how players feel. Finally, using the best results

from the classification methods, we propose a new approach that adapts the game to

improve the experience for players.

We analyzed the relationship between the levels of pressure exerted on the but-

ton of the controller and the players’ results, obtained from questionnaires about

experience and perception.
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In this part we analyzed the correlation between pressure sensitivity values and

answers from a difficulty, fun, frustration and Self Assessment Manikin (SAM) ques-

tionnaires. We found trends and a close correlation between the parameters. Older

players tended to press the button harder than young players (correlation or 0.44).

Players with more experience tended to press the button softer than players with

less experience (correlation of -0.72 for the amount of time playing and -0.64 for the

experience playing videogames).

This section represents the first step of our plan, gives an introduction on the

general approach for this new study and summarizes the findings of analyzing the

data from a group of players.

3.2 Related Work

The idea of using behavioral patterns to detect the player’s current status came

from reviewing different authors in previous research related to this topic. Back

in 2003, Jonathan Sykes and Simon Brown conducted experiments measuring the

pressure used to press buttons on a PlayStation 2 controller while playing clone of

Space Invaders, their results indicated that it is possible to determine the players

level of arousal by using the pressure exerted on the gamepad [26]. In our research,

we included some elements from this study, we decided to use a 2D shooter too (of a

different kind) and the PlayStation 3 controller, which also includes pressure sensitive

capability.

In a race game, there is a study about immersion and its relation with physical

behaviors. Their results indicate that the pressure applied to the controller (not the

button) was highest when people felt more aroused, more present and felt most dom-

inant while playing the game [27]. Our results accord with the conclusion presented

in this previous research about arousal, however, for dominance we obtained the op-

posite result, the reason for this might be related to the type of game that was used

and the way of measuring the pressure on the controller.

Additionally, it was demonstrated that player behavior can be useful as a quali-

tative measure of player experience, using as a case of study fast-paced action games,

their results corroborate the relation between levels of arousal and the pressure ex-

erted on a keyboard [29].

A similar perspective to our general approach of detecting players’ emotions

through behavioral patterns has been revised by previous researchers in recent years,

creating a recognition system using a Support Vector Machine to classify affective
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states from players using eye tracking and speech signal [28]. This method achieved

results with high accuracy and proved to be helpful for being considered in game

interface to enhance interaction.

We decided to use the Self-Assessment Manikin (SAM) for valence, arousal and

dominance to study and compare emotions when playing the video game. This scale

was successfully used for studying emotions in people while playing sounds in a por-

tuguese context [30], in addition, it was used to predict playing time and playing

preferences in games [31] and was also used by researchers to maintain engagement

by adapting the difficulty [32] all with positive results.

The experiment we designed was based on a research that classified boredom,

anxiety and engagement using Support Vector Machine to separate emotions in a

Tetris game with different difficulty levels [32]. In our research, we used the same

Threshold method approach that was successful in this previous work.

Efforts have been made to detect emotions such as boredom, frustration or state of

flow. Particularly, researchers created a computational model to detect frustration in

a game called Kane & Lynch 2, the method is capable of informing developers when

a sequence of actions might be frustrating for players [33]; although it’s a model

designed for only one game, its approach could be useful for designing a more general

method to be applied in different games.

In the same vein, biometric sensors and self-reports were used to classify negative

and positive emotions among a group of programmers, results indicated an accuracy

of 71.36% and progress in 67.70% [34]; in spite of the fact that participants are not

players and the subject is not specifically related to games, their study involved flow

theory, boredom, emotions and the same parameters we evaluate in this research.

Another attempt to improve the player’s game experience was to create a method

to predict difficulty, immersion and amusement, using a machine learning method to

classify the data depending on physiological modality, behavioral modality and meta-

information, researchers used peripheral physiological signals, facial recognition, game

screen recording and in-game data to analyze the results [35]. As a result from this

research, they showed that physiological signal is effective on the prediction of the

player’s game experience, which leads us to reassure our hypothesis about finding

patterns between pressure sensitivity and player experience.

Finally, in a puzzle-based videogame, a new adaptive algorithm was created using

flow theory and cognitive load theory to trigger engagement on players, the method

was tested comparing it with traditional gameplay and choice-based gameplay, con-
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Figure 3.1: A screenshot of a gameplay scene. Players control the spaceship against
enemies that appear from the upper part of the screen, the goal is to destroy them
and avoid being destroyed.

cluding that those participants that used the adaptive method obtained better results

than the other two methods.

In our research, we combine approach and methods that showed positive results

in previous studies and consider that our contribution would help to clarify previ-

ous conclusions and end up creating a method that successfully classifies players’

emotions. Analyzing the relationship between pressure and the parameters that we

evaluated for this section adds up to the current status of the field, allowing future

research to achieve better results.

3.3 Implementation

For data collection, we implemented a 2D space shooting game. The main goal

with our experiments was to gather as much data as possible from the pressure exerted

on the button of a controller and, in this type of games, the player has to press the

button repeatedly to finish. In addition, shooters were used in previous research

[26] and showed positive results. Choosing a similar genre also let us establish a

comparison between our results and previous results in an easier way.

Players control a spaceship that can move throughout the whole game space with-

out rotation, when the game starts, the player has three lives and each life includes

three points of health. The game is divided in waves, each wave has a fixed amount of

enemies that appear from the upper part of the screen, the player has to destroy all
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Figure 3.2: Game objects presented in the game.

the enemies that appear on the screen to clear a wave and continue to the next one, a

sample of a gameplay screen can be seen in figure 3.1. Powerups were not included for

simplicity, the player can shoot using one button and there is no limit in the amount

of shots that can be shot. Enemies attack and move in different ways depending on

their difficulty and there are three items that aid the player when playing: coins, lives

and hearts (health). When players collect 10 coins, a life appears from the upper part

of the screen. Coins and hearts are created randomly when destroying enemies. All

the elements of the game can be seen in figure 3.2.
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3.3.1 DUALSHOCK 3: PlayStation 3 Controller

We decided to use the DUALSHOCK 3 (PlayStation 3 controller) for our experi-

ments due to its pressure-sensitive buttons capability. The controller’s analog buttons

enable developers to accurately capture the pressure when pressing buttons on the

controller. Players used the left thumbstick to move the avatar on the screen and the

X button to shoot.

3.3.2 Tools: ScpToolkit and Unity

The source code of a Windows driver designed for the DualShock 3 and 4 con-

trollers was used to capture the pressure sensitive exerted on the buttons of the

controller. The source of this tool is available under the GNU General Public license

[36]. We wrote a layer of code that connected the libraries of this tool with Unity to

develop the game and use the pressure sensitivity in real time.

3.3.3 Level Design

Levels were manually designed considering the following parameters: number,

type and behavior of enemies for each wave. The difficulty of each level was designed

in a way that the next wave’s difficulty was always equal or higher than the previous

wave. In order to calculate the difficulty for each wave, we used equation 3.1, which

was proposed in a previous research [37].

d =
n

m
W1 +

n∑
i=1

diW2 (3.1)

W1 was set to 0.9 and W2 to 0.1, in the same way that it was done in the previous

work [37]. The number of enemies affects the overall difficulty of a the game more

than the type of those enemies because they can cover more space on the screen and

attacking at the same time creates a higher challenge for players.

Where:

• d: Difficulty of a wave

• n: Number of enemies in the wave

• m: Maximum number of enemies in that wave

• di: Difficulty of each enemy (see table 3.1). This was normalized for the calcu-

lation.

14



Table 3.1: Enemies features: Binary representation for the skills: 1=true,0=false

Skill E1 E2 E3 E4

Bullets 0 1 2 4
Direction 0 1 1 2
Health 1-3 3 4 5
Speed 1 1 2 3
Total 2-4 6 9 14

• Wi: The influence of each part of the equation in the final decision

To calculate the difficulty for each enemy we used table 3.1. Enemies were designed

to be different, add variety to the game and represent different difficulties.

3.3.4 Enemies Behavior

Although all waves were manually designed, enemies behave in a random way ac-

cording to specific parameters. To increase difficulty and add variety to the game, we

allow enemies to shoot and move in different ways, speed and number of bullets shot

consecutively could be chosen from the design of the wave, enabling us to specifically

decide how could they behave but when and how to move and shoot was randomly

selected so players didn’t notice that sometimes enemies were the same with different

abilities.

3.4 Experiment

Using previous research as a model [32], we divided the experiment in two phases:

threshold phase and Trials phase. Before starting the experiment, players were re-

quired to fill out a questionnaire about themselves and their experience playing games.

Questions included: age, gender, playing frequency ,time playing videogames in a

session, experience playing games, player’s skills, experience playing 2D shooters and

skills playing 2D shooters.

3.4.1 Threshold Phase

Since every player has different skills and experience, we needed to know what

level of difficulty could they handle inside the game, in order to determine that, we

used the threshold method. We started the experiment from wave 1 and every time
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the player cleared the current wave, they were taken to the next one which was more

difficult than the previous one but not so difficult so it was impossible to clear.

Considering that this process could have taken a lot of time from the experi-

ment, we included another condition during this phase, a challenge that represented

a difference between players with more experience than others, if they overcame that

challenge they would skip several waves to play levels that would be more suitable

for their skills and if they didn’t overcome the challenge, they would just be taken to

the next wave. The challenge we include is the boss enemy (can be seen in figure 3.2

as boss).

The boss appeared during this phase every 12 waves, when the challenge started,

the player’s health was restored to 100% so we could evaluate if they were capable of

beating the boss regardless their performance before reaching that wave. If the boss

was defeated, players had their health restored to 100% again and then taken 6 waves

ahead to keep playing; in case they lost one life (were defeated by the boss) then the

boss disappeared and players had one life restored to 100% of health and continue

playing on the next wave. This condition was included to speed up the experiment

and to avoid boredom experienced during this phase to affect the next phase of the

experiment. This character appeared only during this part.

The stopping condition for this phase was that the player lost all lives and died.

Once that this happened, players took a rest for 1 min. and filled out a questionnaire

about the the experience they had while playing. Items such as lives and hearts were

removed from this stage to avoid extending the game indefinitely.

The maximum wave reached during this phase was used a pivot for determining

the player’s skills and suitable level of difficulty.

3.4.2 Trials Phase

During this part of the experiment, players had to complete 6 different trials of

a specific number of waves each, two trials were created with medium difficulty (cal-

culated during the threshold phase), two trials were created with easy difficulty (the

medium wave - 16 waves) and two trials were created with hard difficulty (the medium

wave + 16 waves). In the original experiment conducted in a previous research, the

difference between levels was 8, not 16 but after doing preliminary experiments with

players and receiving feedback on the difficulty being almost the same for all trials,

we decided to increase and decrease the difficulty 8 more waves for the hard and easy

trials respectively.
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Each trial had 2 different stopping conditions: (1) players cleared 16 waves (which

would be completing all the waves before reaching the next difficulty) or (2) 3 minutes

passed while playing the game and they were still alive (in previous research each trial

consisted of 5 min. but we decided to reduce it to keep the experiment shorter and

avoid distractions/fatigue). In case players died, they were asked to continue playing

(from the start of the trial) but the time condition was not restarted, it means that

the maximum amount of time they would spend in each trial would be 3 min. The

reason why a game over condition was included is that we wanted to give players

all the features of the game because we didn’t want them to get discouraged while

playing. Trials were presented to the player randomly.

3.4.3 Experience Questionnaire

After completing each session of play, each trial, players were asked to fill out a

questionnaire about their experience about the part of the game they played. The

first group of questions were related to difficulty, fun, frustration and boredom, they

were designed using a 5 points Likert Scale.

In addition, a Self-Assessment Manikin (SAM) test was conducted regarding the

trial they played, players were asked to rate their emotions toward the play session

using a valence-arousal-dominance space. A sample of the SAM test can be seen in

figure 3.3.

The questionnaire for evaluating each session of play is shown as follows:

Questionnaire 1: Playing Experience

1. How would you rate the difficulty of the levels you just played?

2. How would you rate the level of fun you had playing these levels?

3. How would you rate the level of frustration you had playing these levels?

4. How would you rate the level of boredom you had playing these levels?

5. In the following categories, please choose the best approximation on how playing

these levels made you feel. Use the numbers and pictures as a reference to

decide. Figure 3.3 was displayed after this question and participants were able

to choose between 1 - 9 for each category (Valence, Arousal, Dominance)
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Figure 3.3: Self-Assessment Manikin Test: Players were asked to rate their feelings
after playing each trial.

3.5 Results and Analysis

Collected data was gathered from 20 participants with different game skills and

characteristics. 75% of the players were male participants; their age ranged between

12-44 years old and players with low, medium and high experience were tested.

3.5.1 Player’s Profile and Experience

We calculated the correlation between the average pressure applied to the button

of the controller per each participant and the answers obtained from the questionnaire

before starting the experiment: age, gender, play frequency, play time, experience ans

skills. Results for this correlation are shown in table 3.2.

The questionnaire for evaluating the player profile information is shown as follows:

Questionnaire 2: Player Profile

1. What is your age?

2. What is your gender?

3. How often do you play videogames?
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Table 3.2: Player’s Profile. Correlation between pressure and: (Q1)age,
(Q2)gender,(Q3)playing frequency ,(Q4)time playing videogames in a session,
(Q5)experience playing games(general), (Q6)player’s skills(general), (Q7)experience
playing 2D shooters, (Q8)skills playing 2D shooters

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
0.44 0.01 -0.52 -0.72 -0.64 -0.31 -0.27 -0.30

4. How much time do you usually spend playing video games?

5. How much experience do you have playing games in general?

6. How would you rate your skills playing games in general?

7. How much experience do you have playing 2D shooting games?

8. How would you rate your skills playing 2D shooting games?

Pressure and age are correlated in 0.44, a weak positive correlation showing that

the older players are, the harder they press the button of the controller; we consider

that this result is connected to the loss of motor skills that people experience when

ageing, people with low motor skills would try to compensate the lack of accuracy by

pressing the button harder trying to overcome a challenge.

Gender has a a very low positive correlation of 0.01, it doesn’t seem to be an

important factor but in order to get better results on this parameter we would have

to conduct the experiment with more participants, including more female participants.

For the rest of the parameters, all of them related to the experience of play-

ers, we have that playing frequency, playing time and amount of experience playing

videogames have a moderate and strong correlation with pressure. Players with more

experience are expected to being more used to handling a game controller, they very

likely have faced more difficulty challenges than the ones designed for this experiment

therefore, it’s an expected result. The rest of the parameters, despite the fact that

they represent a weak correlation, support the assertion about experience.

3.5.2 Player’s Perception and Feelings

The correlation between average pressure for each player and the results obtained

from the questionnaire of experience when playing the game can be seen in table 3.3.

Some of the calculations were undefined due to the way players answered (all answers

were the same) and these results are not considered for the analysis.
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Figure 3.4: Average pressure results for all players per each wave

Difficulty shows a positive correlation for 73.33% of the participants, ranging from

moderate to strong correlations depending on the player. We can clearly see a trend

and we consider it’s expected from players to press the button of a controller harder

when a game is more difficult, the higher the challenge, the more focused they have to

be and the faster should react. Two players showed a strong correlation (0.81, 0.70)

and the rest of them between weak and moderate positive correlation. From players

that showed negative results, only one has a strong correlation of -0.75.

We calculated the average pressure for every wave in the experiment, including

the threshold phase and trials phase as well, the graphic is shown in figure 3.4. In

previous research we have seen that the more difficult a challenge is, the higher the

pressure players apply to the button of a gamepad. In our analysis, we also found out

that the majority of players showed a positive correlation for these two parameters.

Despite the fact that the overall graph shows a decreasing tendency, not all players

were able to play all waves in the game, only high skilled players reached the last

waves seen in the graph. This confirms that players with higher skills in fact exert

less pressure on the controller and the more difficult the challenge, the higher the

pressure (evaluating chunks of the curve, not as an overall).

From the results obtained for the question regarding fun, 76.92% of the partici-

pants (excluding the undefined results) showed a positive correlation, however, the

majority is a moderate or weak correlation, there are only two players that had a very

strong correlation (0.96, 0.75), on the other hand, for players that showed a negative
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Figure 3.5: valence-arousal space representation. Emotions represented in a 2D space
for classification.

correlation, all of them have a moderate strength. It’s difficult to conclude something

from these results, apparently more people press the button harder when they are

feeling fun but for people whom experience the opposite, results are more consistent.

Frustration had 61.54% of positive correlation from all the participants that could

be calculated, two of them with strong correlations, the rest were negative with weak

correlation, except for one participant that showed -0.75. The majority of players

pressed the button harder when they felt more frustrated, previous research showed

that players increased the force on the controller when playing harder levels, when

players play games with a degree of difficulty higher than their skills they tend to

feel frustrated too. For the specific case of players 4 and 5, both showed negative

correlations for difficulty and frustration, in these particular cases we consider that

this might be related to how the player handles pressure in general.

For boredom, 53.85% of the players showed a negative correlation, ranging from

moderate to strong. The softer they pressed the button, the higher the boring feeling

was. Boredom manifests in lack of motivation, players were not motivated enough

to press the button harder when they felt bored, this is an expected result from this

particular case. For the players that showed the opposite results, we don’t have clear
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Table 3.3: Correlation between pressure pressure and: (Q1)difficulty,
(Q2)fun,(Q3)frustration ,(Q4)boredom, (Q5)valence, (Q6)arousal, (Q7)dominance

Pla. Q1 Q2 Q3 Q4 Q5 Q6 Q7

1 -0.21 – 0.79 0.36 -0.36 0.51 -0.91
2 0.20 0.37 0.08 -0.64 -0.54 0.07 -0.35
3 -0.11 -0.58 0.25 0.38 -0.43 -0.61 -0.24
4 -0.75 -0.49 -0.75 – – -0.15 –
5 -0.15 0.96 -0.17 -0.08 0.32 0.17 -0.45
6 0.15 0.25 -0.14 -0.72 0.25 -0.08 -0.54
7 0.70 – 0.15 – – 0.46 -0.22
8 0.30 -0.54 – 0.51 -0.30 0.07 -0.83
9 0.61 0.33 – -0.08 0.29 0.65 -0.49
10 0.81 0.48 0.81 -0.60 0.63 0.88 -0.42
11 0.22 0.14 -0.11 -0.20 0.19 0.16 0.59
12 0.33 0.29 0.03 0.06 0.40 -0.21 -0.41
13 0.35 0.44 -0.11 -0.09 0.03 0.52 0.30
14 0.46 0.75 0.46 0.05 0.87 0.71 0.14
15 0.01 0.13 0.41 0.19 -0.27 0.08 -0.09

conclusions but assume it’s related to specific ways of reacting to boredom.

The analysis of valence, arousal and boredom, includes the arousal-valence space

model shown in figure 3.5, in addition to evaluating the correlation of each parameter

with pressure values, we displayed the results on this space in figure 3.6. We can

observe in the graph that the majority of the results are located around on the positive

quadrants, excited, happy, content and calm, however there are some results on the

neutral state and few ones on the sad, afraid and depressed quadrant. In general,

this is an expected result from this experiment, players were focused on trying to

obtain good scores while playing, positive and negative emotions that translated into

excitement or calmness, triggered by the difficulty of the levels.

Valence showed a result of positive correlation for 61.54% of the players, being

almost all of them weak or moderate, except with one strong correlation (0.87). The

happier players felt when playing, the harder the pressed the button, according to

these results. Considering the values in table 3.4 showing the correlation between

the parameters (not pressure), we can see that the highest correlation is fun/valence,

the more fun players experienced, the happier they felt and harder they pressed

the button on the controller. These are natural reactions to experiencing positive

stimuli, projected physically on the behavior of these players. In previous research

[27], researchers presented results for arousal but not valence, our results suggest that
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Table 3.4: Enemies features: Binary representation for the skills: 1=true,0=false

Dif. Fun Fru. Bor. Val. Aro. Dom.

Dif. – 0.39 0.51 -0.12 0.31 0.34 -0.15
Fun – – 0.22 -0.37 0.65 0.33 -0.08
Fru. – – – 0.11 0.07 0.52 -0.10
Bor. – – – – -0.37 0.06 -0.07
Val. – – – – – 0.34 0.26
Aro. – – – – – – 0.09

the correlation on valence is not clear enough for all players but it is closely related

to the factor fun.

73.33% of our participants’ results for arousal show a positive correlation with

pressure, some of them moderate and one strong correlation. These results accord

with previous research [26, 27, 29], arousal and pressure are directly proportional.

Finally, dominance has the the most solid results of the whole study, 78.57% of

the participants evaluated show a negative correlation with pressure, the harder the

press the button the less dominance they feel. We consider that this is related to how

powerful players feel when playing, if they are stressed out by difficult challenges,

they are not in control of the situation, feeling less dominant towards the game. In

previous research [27], the opposite conclusion was presented, we believe it’s likely

related tot he fact that both experiments were different and the parameters we chose

for measuring the pressure, we were focused on the button itself, previous research

was focused on the controller as a whole.

3.5.3 Parameters Correlation

We calculated the correlation between all the parameters that we considered for

this study, table 3.4 shows all the results. We found out that valence and fun are

moderately correlated with a value of 0.65, that’s why we mentioned the importance

of these two factors in the previous section. The more fun players are having, the

happier they feel. Frustration and arousal also have a moderate correlation of 0.52,

which is an expected result. When players are frustrated, they tend to get angry

or excited and it’s exactly what we can see in figure 3.5 that shows the emotions

triggered by each parameter. Finally, difficulty/fun and difficulty/frustration have

a weak and moderate positive correlation of 0.39 and 0.51 respectively, players find

challenges more fun than easier tasks and the more difficult a challenge is, the more

frustration it can cause. This could be explained using the flow state, players’ skills
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Figure 3.6: Results from the experiment displayed in a valence-arousal space to clas-
sify players’ feelings.

and level of challenge they face, players tend to perceive little challenges over their

skills more fun than challenges under their skills which ultimately trigger boredom.

3.5.4 Parameters Classification Proposal

As an overall goal for our research, we plan to use the pressure on the button of

a gamepad to determine how players feel when playing a game and modify the game

accordingly to improve the experience. After analyzing the obtained results from the

first step of our approach, we consider that some of the parameters we evaluated

could be classified according to the pressure levels. Having high negative correlation

values on the player experience and pressure, we can estimate the overall experience

that a player has by looking at patterns from the pressure on the controller; we can

also assume that since dominance is inversely proportional to the pressure, players
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Figure 3.7: Correlation: Pressure-Parameters. Results for all experiments.

that show high pressure values during playtime, might not feel in power. The real

importance of analyzing these results before continuing with the next step of the

plan, is to focus on the parameters that best represent the players’ emotions, by

understanding these results, we will be able to make a more accurate method to

classify these factors and offer an improved experience as a whole.

Table 3.5 shows the results for all the experiments conducted in this part of the

research. In addition, figure 3.7 shows a box plot applied to these results.

3.6 Discussion

Although our approach with this research is the result of a combination of elements

from previous studies, using pressure sensitivity exerted on a button’s gamepad to

recognize emotions felt by players, is a novel way to determine players’ behavior. We

consider that with this new idea, it will possible to dynamically change the content

to make games that are more engaging and enjoyable for players.

According to the results obtained from our experiments, there is a significant

correlation between pressure sensitivity and some of the parameters evaluated when

conducting questionnaires to players. This means that there is a relationship between

25



Table 3.5: Correlation Pressure-Parameters

Player Difficulty Fun Frustration Boredom Valence Arousal Dominance

1 -0.21 NAN 0.79 0.36 -0.36 0.51 -0.91
2 0.20 0.37 0.08 -0.64 -0.54 0.07 -0.35
3 -0.11 -0.58 0.25 0.38 -0.43 -0.61 -0.24
4 -0.75 -0.49 -0.75 NAN NAN -0.15 NAN
5 -0.15 0.96 -0.17 -0.08 0.32 0.17 -0.45
6 0.15 0.25 -0.14 -0.72 0.25 -0.08 -0.54
7 0.70 NAN 0.15 NAN NAN 0.46 -0.22
8 0.30 -0.54 NAN 0.51 -0.30 0.07 -0.83
9 0.61 0.33 NAN -0.08 0.29 0.65 -0.49
10 0.81 0.48 0.81 -0.60 0.63 0.88 -0.42
11 0.22 0.14 -0.11 -0.20 0.19 0.16 0.59
12 0.33 0.29 0.03 0.06 0.40 -0.21 -0.41
13 0.35 0.44 -0.11 -0.09 0.03 0.52 0.30
14 0.46 0.75 0.46 0.05 0.87 0.71 0.14
15 0.01 0.13 0.41 0.19 -0.27 0.08 -0.09

feelings and perception experienced by players and the way they physically behave

when using the controller.

Indications of this relationship were also shown in previous research [26, 34]. Our

approach differs from previous ones in the way that elements were combined for the

experiments and their evaluation, in contrast with the related literature, we found

out that some parameters such as dominance and fun, have a positive correlation.

Some of the parameters evaluated in this part of the research, were not evaluated in

previous studies or were evaluated in unrelated works. We consider that a combination

of different parameters can lead to more interested ways to predict the user’s behavior

in a better way.

In addition, the correlation obtained from analyzing the results of our experiments,

show that there is a clear relationship between how players feel and the interaction

that they have with the controllers, which was one the previously defined hypothesis.

These results add up to the previous work [26], which also indicated that there was

a relationship between these two elements.

This part of our research contributes to clarify a couple of objectives defined in

the beginning of this document: (1) proving how can emotions be predicted using be-

havioral patterns; (2) proposing a concrete method to connect them. This is the first

step to propose a concrete method to link behavioral patterns and player’s emotions.

Despite the fact that we only calculated the correlation between pressure sensitivity
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values and a group of pre-defined parameters. Having a way to predict these param-

eters using players’ behavior would be big step towards finding a concrete method to

adapt the player experience.

Among the things that can be done to improve this research, we consider that ana-

lyzing the data with statistic methods or including other parameters would contribute

to obtain more significant results.

3.7 Chapter Conclusions

We proposed a general approach to improve the experience for players when play-

ing video games through behavioral patterns, specifically pressure sensitivity. As a

first step of this proposal, data from 20 participants with different skills and charac-

teristics was obtained and analyzed using the correlation, self-reporting methods and

previous research.

Results corroborated some of the hypothesis and results done by previous re-

searchers. We showed that pressure and difficulty are directly proportional. Arousal

and pressure also had a moderate to strong positive correlation. Players pressed

the button of the controller harder when they face more difficult challenges and the

happier they feel when playing, the harder they press the button.

In addition, one of the clearest results we obtained was re relationship between

dominance and pressure. There was a negative correlation between these two param-

eters for 78.57% of the participants, demonstrating that the harder players press a

button, the less dominant they feel. We consider that this is related to how powerful

players feel when playing and it’s triggered by stress felt due to complicated situations

such as hard challenges.

Another consistent result with 76.92% of the participants showing a positive corre-

lation was the relationship between fun and pressure, people tend to press the button

harder when having more fun, players express the excitement through the controller.

Analyzing the results with the personal data obtained from players and experience

reported by them, we observed that older players tend to press the button harder,

which could be a consequence of deterioration of motor skills, leading to lack of

accuracy and triggering physical actions to compensate.

Players with more experience tend to press the button softer, which is an expected

results after analyzing it, players with more skills are more used to handling a con-

troller, they have also faced more challenges than players with less skills, therefore,

these players react calmed and can easily overcome challenges with less difficulty.
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Finally, we consider that this study is not only important for our overall research

approach because it shows us which parameters are more correlated to other and

helped us make a clear proposal about the design of a better method to classify

emotions for players, but also the conclusions of this research serve to corroborate

previous results and to show new analysis that contrast with other results.
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Chapter 4

Behavioral Patterns: Classification
Methods

4.1 Introduction

As well as the previous chapter, this part of the research was conducted with

the guidance of professor Koji Mikami (supervisor) and professor Kunio Kondo, who

supported the author from the phase of planning and design to implementation and

analysis.

This section constitutes the second step of our new approach: Classification Meth-

ods, which is part of a more general goal of improving the players’ experience by

analyzing their behavior through the pressure exerted on a gamepad’s button.

We used the data collected from an experiment conducted with 20 different players

and design classification models: Neural Networks and Support Vector Machines, to

predict, in real time, how players perceive the game or how they feel.

Support vector machines and neural networks are widely used to classify data and

make predictions in real time [38, 39, 40]. For our specific problem, which involve

behavioral patterns related data, emotions and player’s perceptions, some researchers

working in the same feel have achieved good results using machine learning methods

[41, 32, 28]. Due to the nature of our problem and the effectiveness of neural networks

and support vector machines, we decided to used them for classification.

Players played 6 levels of a 2D space shooter and, after finishing each level, ques-

tionnaires to measure their perception towards the game were applied, among the

measured parameters we have: difficulty, fun, frustration, boredom, valence, arousal

and dominance. In addition, in-game data was collected for future analysis.

All the collected data was used with a set of different machine learning algorithms,

three different types of neural networks and three support vector machines for each
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parameter measured in the questionnaires were designed, we tested several times to

obtain the best possible results and input values for each method.

The following subsections describe how we designed the learning algorithms and

results for the best method and parameters.

4.2 Related Work

There are several studies that involve the recognition of emotions and in-game

player related parameters. Creating a recognition system using Support Vector Ma-

chines, researchers classified affective states from players and collecting speech signal

data and an eye tracker [28]. Results showed high accuracy by applying these methods

and they are being consider for improving the player interaction.

In order to predict valence, arousal and dominance, researchers focused on using

random forests to prevent undesired emotions when playing video games [41]. As a

result from this study, Frommel et al. proposed an architecture to react to player’s

emotions using procedural content generation and emotion detection.

Support vector machines were used to predict emotions and to keep players en-

gaged while playing a game by adapting its difficulty automatically according to the

predicted outputs [32]. Positive results with an accuracy of 53.33% were achieved by

researchers in this study. We decided to design our experiments in a similar way to

what Chanel et al. did, we adapted and changed their approach to include it in our

proposal.

Using physiological signals, it was shown that game experience can be accurately

predicted [35]. A machine learning method was implemented to classify difficulty,

immersion and amusement from players while playing FIFA 2016. This study involved

physiological signals, facial recognition, game screen recording and in-game data.

Using flow theory and cognitive load theory to trigger engagement on players,

researchers designed a new adaptive method that showed successful results by com-

paring their proposal with traditional gameplay and choice-based gameplay [42, 43].

Considering that previous research has demonstrated that player’s behavior is not

only directly related with that players are experiencing but also can be classified and

estimated, we decided to combine similar elements from the previous work and include

it in our approach, using the features that lead to positive results. We attempt to

measure and understand the player’s emotions and game related parameters using

machine learning methods.
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Table 4.1: Number of samples per class.
Cla Dif Fun Fru Bor Val Aro Dom
1 38092 49921 34067 29263 53513 65464 64987
0 85394 73565 89419 94223 69973 58022 58499

4.3 Machine Learning: Data Classification

For this part of our research the main goal was to analyze the collected data and

search for patterns that could show a relationship between the specific behavior of

pressing a button and how the player perceives game related parameters and emotions.

To evaluate the data and find possible patterns, we used Neural Networks and Support

Vector Machines and compare results of each method using accuracy calculated in

the testing phase.

As a general approach for evaluating the results of each machine learning system,

we took all the data gathered from our experiments, used that as input for different

neural networks and support vector machines that were specifically designed for each

parameter or emotion that was presented in the questionnaires to finally predict how

the player was feeling or perceiving the game at that specific time. Figure 4.1 shows

the general idea.

Different machine learning systems were created for each specific parameter evalu-

ated in the questionnaire. Neural networks and support vector machines for difficulty,

fun, frustration, boredom, valence, arousal and dominance were tested. In addition,

depending on the parameter’s output, a different system was created, the output for

each question was converted to the space of 0s and 1s to achieve better results, more

details about the structure and design decisions will be explained in the following

sections.

4.3.1 Input Data

Collected data from all users (20 people) with a total number of samples of 123486

including all the player’s results. We used the method Leave One Out (LOO), which

is a special case of cross-validation where one participant’s data is used to test and

the rest of the data to train the model; this process is repeated until all participants’

data is used [44].

The input size of our models was 5, we determined this value by testing with

different input sizes and choosing the one with the best result.

Table 4.1 shows the details of each class for each parameter.
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Figure 4.1: General Approach: Use input data in a machine learning method to
predict parameters

4.3.2 Input Data Pre-Processing and Labeling

All data was separated and labeled depending on the answers given by players

while doing the experiment. After completing one full session in the game, all the

collected data for that specific session was classified using the given answers, as an

example, if the player rates one session as ’very difficult’, all the input will be labeled

as ’very difficult’ for that session.

Since the pace in one level can change from easier to harder while progressing,

labeling all the input values in one specific category could lead to loss of granularity

about what the player is really feeling in each part of the game, this is why we decided

to pre-process the data and calculate the average of each input by the time the input

was stored. Using the average data of each input value, allowed us to work with the

tendency of that session instead of values in a specific time.

4.3.3 Output Data Codification

Questions for the first four parameters were designed using a Likert scale of 5

points; the second part of the questionnaire was designed using the SAM method

which consisted of 9 different answers for each parameter.

In order to use the collected data for the mentioned machine learning methods,

we grouped the output vector according to three different categories: low, medium

and high. Parameters that were originally codified with 5 outputs were transformed

to a binary output and parameters that were originally codified as 9 outputs, were

transformed to a binary output as well. This means that we created one specific

machine for each parameter and for each group of that parameter, being in total, 3

different machines per parameter and for each method respectively.
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4.3.4 SciKit Learn

All the evaluation was conducted using a free software machine learning library

called Scikit-learn. In order to choose the best parameters for each method, we

conducted a series of preliminary simulations for each system and, in the end, we

took the parameters with best results and use them to calculate what we present in

this paper as our results.

Neural Network’s Parameters:

• Rate: Constant

• Activation function: Relu

• Number of hidden nodes: 100

• Max. iterations: 1000

• Solver: lbfgs

Support Vector Machine’s Parameters:

• Kernel: Radial Basis Function

• Degree: 3

• C-Parameter: 1

• Gamma: 1
n

(being n the number of features)

4.4 Accuracy Calculation

We used the calculated accuracy to determine how well a system was able to

predict the results for a specific parameter with a specific configuration using pressure

sensitivity. High accuracy means better prediction when deciding what is the best

classification for an input.

Accuracy for each model was calculated by obtaining the mean value of all accu-

racy results for each iteration of the LOO cross validation. Equation 4.1 shows the

formula to calculate the overall accuracy for each model.

M(X, Y ) =
1

n

n−1∑
i=0

A(Xi, Yi) (4.1)

where:
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• X represents a set with all the Leave One Out training data; Y is a set with all

the expected outcomes for X.

• A(Xi, Yi) is the accuracy calculated for the specific set i. This function is defined

in equation 4.2.

A(x, y) =
1

n

n−1∑
i=0

f(x = y) (4.2)

where:

• x represents the test data; y the expected outcome for x.

• f(x = y) indicates whether x is equal to y or not.

4.4.1 Proficiency Levels of Players

Data from all types of players was collected during our experiments. We did not

divide the data or the players’ results by proficiency when designing and validating

our models.

4.5 Results and Analysis

Collected data was gathered from 20 participants with different game skills and

characteristics. 75% of the players were male participants; their age ranged between

12-44 years old and players with low, medium and high experience were tested.

4.5.1 Best Results

As a general result, support vector machines performed better than neural net-

works in all parameters except frustration, for which neural networks showed a better

result. The average accuracy (all parameters) for neural networks was 68.55% and

for support vector machines was 70.69%.

The best result was achieved with the boredom parameter, with 83.64% of accu-

racy, difficulty rated by the player, fun, frustration and dominance, were predicted

with more than 70% of accuracy. All the average results can be seen in figure 4.2,

showing all the evaluated parameters from the questionnaires in the horizontal axis,

vertical axis shows the calculated accuracy.
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Figure 4.2: Average accuracy results for Neural Networks and Support Vector Ma-
chines

Figure 4.3 and 4.4 show the best achieved results with support vector machines and

neural networks respectively. As well as figure 4.2, the horizontal axis shows all the

evaluated parameters, obtained from data collected using the questionnaires about

emotions and player’s perception. Each parameter was tested with three different

machines: detecting low, medium and high difficulty output configurations. Vertical

axis shows the accuracy for each parameter and with each output configuration.

From these two graphs and the calculated average result of each output configu-

ration, we have that recognition of the low codification was the highest (77.03% for

SVM and 75.46% for NN), followed by the high codification (72.17% for SVM and

69.65% for NN) and in the last place we can see that medium showed the worst results

(62.88% for SVM and 60.55% for NN).

Table 4.2 shows the results for all the experiments conducted in this part of the

research, data was divided into Neural Network results and Support Vector Machine

results and results about the accuracy for each machine and the Area Under the Curve

(AUC) value. The same table includes all the parameters previously mentioned and

a classification depending on the output code used for those experiments.

In addition, figure 4.5 shows a box plot applied to these results for Neural Net-

works; similarly, figure 4.6 shows a box plot with the results for Support Vector

Machines.
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Figure 4.3: Accuracy results Using Support Vector Machines

4.5.2 Output Codification

The importance of understanding which output codification works best, gives us

a hint about what would be better to use when designing a general method to predict

these parameters’ status. Considering that none of the evaluated methods is fully

accurate in their predictions, it would be useful to understand what setup could

contribute to achieve better results.

Another relevant conclusion from this specific part of the results analysis is that

we could use different output configurations for different parameters, for instance, cal-

culated difficulty and frustration work best with a high configuration, in contrast, the

rest of the parameters would predict with higher accuracy using the low configuration.

4.5.3 How to Use these Parameters

Supported by the results presented in this paper, we can estimate that the best

setup for predicting game experience related parameters and emotions would be using

different neural networks as classification method and, depending on the parameter,

use a specific output configuration. One possible approach would be to choose the

highest accuracy network for each parameter and use it as is; a different approach

could be to combine different neural networks to corroborate the results and use them.

These are only our estimations, this needs to be tested with new experiments and

new proposals.
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Figure 4.4: Accuracy results Using Neural Networks

4.6 Discussion

We tested two machine learning methods: Neural Networks and Support Vector

Machines, to design a new model that could predict player’s perception and emotions

related parameters. In different studies from the previous literature, other researchers

have tested the effect of Support Vector Machines and some of these parameters [32].

The novelty of our approach and the way we add up to this previous study, was to

include parameters measured with SAM questionnaires and to test Neural Networks.

Our results show that Support Vector Machines (as in the previous work) classified

he data with a higher accuracy. However, Neural Networks also performed well. In

addition, the results obtained with our model were more accurate than the previous

study, demonstrating that this approach could be a better solution for recognizing

emotions/player’s perception related parameters.

One of the Hypotheses established at the beginning of this document was that

emotions can be predicted using behavioral patterns. We have demonstrated that

it is possible to do it with an accuracy higher than 70.69% as an overall results for

the analyzed parameters. This also corroborates that there is a relationship between

players’ perception of the game and the way they behave.

We propose the models presented in this research to classify emotions and player

related parameters, using pressure sensitivity. Combining this method in order to

decide how to change the content of a game according to how the player feels at a

determined time, would help developers adapt games for a better experience.
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Figure 4.5: All Results for Neural Networks (All Codes)

Concretely, we believe that a combination of different Support Vector Machines

and possibly a Neural Network, could be a support to decide when to make the game

more difficult or easier, depending on how that player is feeling. This could also

encourage players to rest when they probably feel to excited or they are not having

fun with the game.

With this results and our proposal, we have shown a way to connect behavioral

patterns and player’s emotions, which is one of the objectives of this study.

For improving this research, we consider that would be assertive to conduct more

experiments with different parameters for the machine learning methods we tested.

In addition, it would be good to try other types of classification methods and compare

with the results presented here.

4.7 Chapter Conclusions

Understanding how the players’ perception of game related parameters and emo-

tions is related to pressure sensitivity, would help developers to use that knowledge to

create more appropriate experiences. We presented the results of the second step of

that general approach: finding patterns between pressure and player-related param-

eters. Data from 20 participants was analyzed through machine learning methods.
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Figure 4.6: All Results for Support Vector Machines (All Codes)

Support vector machines demonstrated to be a better method to classify this type

of data according to our results, neural networks average prediction accuracy was

68.55% and support vector machines showed 70.69%.

Despite the fact that the analysis for both research was different, our average

best result using neural networks, are better than a previous research [32] which

involved the use of support vector machines to classify boredom, engagement and fun,

achieving an accuracy of 53.44%. Our results for those three parameters, were higher.

It would be meaningful to analyze these three parameters using neural networks in

the way that the previous research’s study was conducted and this might contribute

to a better understanding of this data.

Results show that boredom was the parameter with the highest accuracy (83.64%),

which means that with that percentage of accuracy, it would be possible to determine

when the player is bored using pressure sensitivity collected while playing. This result

can be used by game developers to include more exciting challenges or content when

determining that the player is feeling bored about what they are playing, this could

also mean that the game should stop at this point to give the player some time to

relax or recover the pace. In addition, frustration, fun, difficulty and arousal were

predicted with more than 70% of accuracy.

Analyzing all the output configurations and their results, we can say that depend-

ing on each parameter, the results vary. Calculated difficulty and boredom showed
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Table 4.2: All Results for Neural Networks and Support Vector Machines (All Codes)

Method Fea Typ Dif Fun Fru Bor Val Aro Dom Code

NN
Acc 75.95 83.14 95.23 61.84 72.93 36.59 66.24 65.27

HIG
AUC 0.61 0.68 0.68 0.58 0.5 0.62 0.55 0.66

SVM
Acc 79.64 87.35 95.31 45.45 75.47 50.19 71.23 72.73
AUC 0.5 0.65 0.67 0.5 0.5 0.56 0.5 0.64

NN
Acc 62.32 54.35 53.29 77.83 96.73 95.08 80.84 83.23

LOW
AUC 0.65 0.67 0.57 0.73 0.59 0.67 0.71 0.57

SVM
Acc 62.96 58.22 54.34 81.89 96.75 95.93 81.57 84.58
AUC 0.6 0.5 0.5 0.7 0.5 0.5 0.65 0.5

NN
Acc 52.19 66.28 57.89 71.13 76.43 48.26 56.99 55.23

MED
AUC 0.62 0.61 0.65 0.64 0.6 0.63 0.68 0.65

SVM
Acc 57.4 70.93 60.78 70.4 78.71 55.32 53.44 56.08
AUC 0.56 0.54 0.6 0.63 0.5 0.57 0.63 0.63

their best results with a high output codification; the rest of the parameters showed

their best results with the low configuration. It’s easier to classify the extreme values

of each parameters, which could be helpful for developers.
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Chapter 5

Rhythm Group Theory and EEG

5.1 Introduction

Following the same approach of previous chapters, this part of the research was

conducted with the guidance of professor Koji Mikami (supervisor) and professor

Kunio Kondo, who supported the author from the phase of planning and design to

implementation and analysis.

As mentioned in the previous section, Dynamic Difficulty Adjustment is one suit-

able solution for avoiding unbalanced difficulty when designed well and it has proved

to be successful in the past [45]. However, the experience of players can be ruined by

a poor implementation when they realize that difficulty is being adjusted deliberately

[46]. In order to avoid this issue, we focused on finding a complementary compo-

nent that could support traditional difficulty adjustment, adding variety and better

results.

The level of challenge in video games is one of the most relevant aspects that

affect the player experience, however it’s not the only one [47]. Immersion plays a

very important role determining how the player experience is shaped in general [48]

and the levels of attention of players while playing a game influence how immersion

fluctuates through time [49].

The word immersion in the video games field is used in a symbolic way for ex-

plaining the experience of feeling surrounded by a different reality as if players were

submerged in water, it’s a way to refer to the sensation of a deep feeling, having all

our senses focused on a specific reality, the virtual reality [50].

Player experience is defined as the relationship between the player and the game,

the influence that causes the game on the player while playing and the reactions

triggered by that interaction [51]. The proper balance between frustration, challenge,

and immersion, transforms into a good player experience [52].
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Prompted by the relationship between immersion and player experience, we de-

cided to include an Electroencephalography (EEG) component to measure attention

values. This adds variety to the adjustment, making it less predictable for players.

For the automatic creation of levels we used Rhythm-Group theory [53], a success-

ful Procedural Content Generation method to construct levels with a sense of rhythm

for the player.

This section presents the results and analysis of the combination of these two

components to adapt the difficulty for a 2D platformer and an attempt to improve

the player’s experience.

5.2 Related Work

For the particular case of this part of the research, one of the most relevant studies

is the work of Martin Jennings-Teats et. al [19] which propose an approach similar

to ours; using DDA and Procedural Content Generation, they created a personalized

and structural experience for players. Our original contribution is the inclusion of the

EEG component to the previous approach.

In recent years there have been several of studies related to BCI and games, mobile

games [54] showing how useful these devices could be working together with mobile

devices; PC-based FPS games [55] focused on the player experience and interaction;

and even for conducting research related to how players learn to play [56], etc. These

devices, specifically EEG-based devices, have also proved to be useful for making

adaptive games [57], which is particularly our field of study.

EEG biosensors, are suitable to be used for cognitive games [58]; in multiplayer

cooperative games [59], for evaluating how the cognitive activity changes while play-

ing with teammates; also in serious games, in order to promote rehabilitation with

patients that suffer from motor deficits due to a stroke, these researchers developed

a new game that aims to help them with the process of rehabilitation [60].

Neurosky Mindwave Mobile device [61], which has shown positive results in relia-

bility and commercial contexts, was used to capture the attention data from players

[62]. In addition, a research particularly focused on video games has shown that the

device accurately reads values of attention from players [63].

Previous researchers used a similar approach combining DDA and BCI to improve

performance while doing a specific task [64]. Our research differs from theirs in

different aspects: we use EEG and they use fNIRS; our field of test was games,

theirs was general tasks’ performance; results show that performance was improved
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Figure 5.1: General design of our approach

by detecting boredom, in our case, we didn’t only improve performance but also

adapted the difficulty depending on the players’ skills to achieve a more suitable

experience.

Procedural Content Generation (PCG) methods are a good alternative to auto-

matically modify the level design according to how players play in a game [65].

In previous research the effectiveness of PCG was demonstrated using games [66].

Georgios N. Yannakakis and Julian Togelius introduced a framework for procedural

content generation applied with computational models of user experience, they cre-

ated a method for developers to trigger specific experiences depending on the user

decisions or status inside the game.

5.3 Method

Our method consists of the combination of three different elements: Dynamic

Difficulty Adjustment, Rhythm-Group Theory and Brain Computer Interface. A

general flow of our approach can be seen in figure 5.1.

5.3.1 Dynamic Difficulty Adjustment

Dynamic Difficulty Adjustment (DDA), is the process of changing game elements

automatically in real-time, based on the player’s performance, in order to adapt the

game to each player and avoid frustration or boredom [67].
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Figure 5.2: Level generation algorithm

We calculate the difficulty using the numbers of threats present in a level, specif-

ically the number and width of gaps, number of enemies in each platform and the

type of these enemies (beatable or unbeatable).

Difficulty is adapted according to performance and attention levels calculated by

the EEG device while playing.

5.3.2 Rhythm-Group Theory

A Rhythm-based method for 2D platform games is a type of technique for auto-

matic level creation in which rhythm is what the player feels with his hands while

playing [53]. This method is a tool for the developer to create levels with a sense of

rhythm, levels that are playable and have a natural feeling for players when it comes

to level shape and experience. We are using only a part of the method created by

Gillian Smith et al., here we describe the parts of the method used for our research,

to read the details about the original method, see [53].

Figure 5.2 (taken from the original source) shows the overall method’s flow: the

creation of a rhythm using a Rhythm System; a set of physical constraints are applied

to ensure that the level is well formed (it can be played and completed by the player);
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the result is put in a Geometry System that translates all the elements of the rhythm

into physical elements (platforms, enemies, etc); finally the level is created.

5.3.3 Brain Computer Interface

Brain Computer Interface or BCI [68] systems are based on obtaining electroen-

cephalogram (EEG) data, extracting relevant information to translate it into com-

mands to be read by software or particular applications [69].

For input extraction we are using Neurosky Mindwave Mobile, a bioensor that

digitizes brain data into concise inputs for developers to be able to interact with it in

real time, using a set of pre-designed algorithms API to monitor brain activity.

For this research we use the eSense value Attention, which is a value between 0

and 100 (being 0 the least focused and 100 the most focused) that describes the levels

of attention of the user in real time.

5.4 Implementation

The game is a side-scrolling 2D platformer in which the player has to reach a goal

placed on the right-most part of the level, very similar to Super Mario Bros [70]. The

player is required to overcome simple challenges: gaps between platforms, beatable

enemies and unbeatable enemies, both types of enemies static. In the beginning of

each level players get two bars of health, once the player loses both, has start from

the beginning of the level, in addition, the game time is shown on top-center of the

screen.

5.4.1 EEG Data

According to the documentation [61], values from 80 to 100 are considered ele-

vated ; values from 60 to 80 are considered slightly elevated ; values from 40 to 60 is

neutral ; values from 20 to 40 reduced and values from 1 to 20 strongly lowered.

By default, the device outputs data once a second, it means, we get as many values

as the time the player plays a level. We calculate the average of all values obtained

in a level, the calculation is shown in equation 5.1.

If a player is concentrated in a task, would perform better than if concentration

levels were poor [71]. Considering this, when attention values are high, it means the

player is concentrated in the game, it also means should perform better so we decided
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to add a higher level of challenge when the player is focused, in contrast, if the player

is not focused, we reduce the level of difficulty.

A =
1

n

n∑
i=0

ai (5.1)

Arithmetic Mean (A): ai is the attention calculated by the device per second and

n is the number of seconds that the player takes to finish a level. The interval time

for this equation depends on how long each player takes to complete a level.

5.4.2 Player’s Performance

To calculate the player’s performance we considered two parameters: number of

deaths or hits by an enemy and gameplay time (time from start to end). Low values

for number of hits and play time result in a high performance, on the opposite case,

high values for these parameters result in low performance.

P =
1

1 + h + d
X1 +

g

e
X2 (5.2)

Performance (P ): d is the number of deaths; h is the number of times hit by an

enemy; g is the gameplay time; e is the expected completion time and X1, X2 are

weights that represent the influence of each term in the final calculation.

The term 1
1+h+d

is calculated by cross-multiplication, the number of times hit or

deaths is inversely proportional to how well players are playing, we sum 1 to avoid

division by zero. The term g
e

is calculated by the same cross-multiplication principle,

when players take more time to complete a level, performance decreases.

5.4.3 Dynamic Difficulty Adjustment

We used the attention value calculated in equation 5.1 and the player’s perfor-

mance value calculated in equation 5.2 and combined them in equation 5.3 to get a

general a global value that involves both parameters. These two values can comple-

ment each other and affect the final calculation. Weight for this equation were both

set to 0.5, same amount of influence for both parameters, attention and performance.

G = PW1 + AW2 (5.3)

Combination of performance and attention (G): P is the performance calculated

in equation 5.2; A is the attention average calculated in equation 5.1 and W1,W2 are

weights that represent the influence of each term on the final calculation.
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At =
1

nt

nt∑
i=0

ati (5.4)

Arithmetic Mean (At) for specific elements of type t: ati is the attention obtained

from the device when the player interacts with elements of type t ; nt is the number

of times the player interacts with elements of type t and t = [low enemy, medium

enemy, high enemy, gap]. The interval time for this equation depends on how many

times the player interacts with elements of type t.

Pt =
1

1 + (ht + dt)
(5.5)

Performance per type (Pt): ht is the number of times the player has been hit by

enemies of type t; dt is the number of times a player has died due to enemies of type

t; t = [low enemy, medium enemy, high enemy, gap].

The term 1
1+(ht+dt)

is calculated by cross-multiplication, the number of times hit

or deaths is inversely proportional to how well players are playing, we sum 1 to avoid

division by zero.

Equation 5.6 shows how to calculate the global value to decide how many ele-

ments of each kind are included in the level. Equation 5.5 shows the performance

calculation for a particular type of element and the calculation for attention values

of a particular type of element is the same as equation 5.1 but instead of using all

values, we calculated how attention values behaved when the player interacted with

elements of that kind.

For example, low jump is one of the element types; to decide how many elements

(percentage of occurrence) we assigned to low jump actions, when the player dies due

to an element of type low jump, we reduce the number of low jump type elements

in the next level, it means, we are trying to add elements that increase the player’s

performance. In the case of attention, if the calculated attention was registered high

for low jump type elements, we increase the number of this type of elements to increase

get better results in the next level.

There is a compensation between both values, performance and attention, that

work together to calculate the final percentage of occurrence of each element, it really

adds variation to the gameplay and the experience in general.

Gt = PtZ1 + AtZ2 (5.6)
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Combination of performance and attention for elements of type t (Gt): Pt is the

performance calculated in equation 5.5; At is the attention average calculated in

equation 5.4 and Z1, Z2 are weights that represent the influence of each term on the

final calculation.

5.4.4 Rhythm-Group System

A set of parameters are important to take into consideration to construct a rhythm,

these are: rhythm type, rhythm density, action types, number of actions. For our

research we used the following values:

• Action Type: we chose the simplest ones run and jump. For the action jump,

there are three different types: low, medium and high

• Rhythm Type: we are using a regular type of rhythm which means that actions

are evenly distributed in the rhythm, other types of actions are random or swing.

• Rhythm Density: number of actions in a rhythm, we choose this depending on

how the player results are, the better the result, the higher the density. The

minimum value is 5 actions and maximum value is 50 actions.

• Rhythm Length: this is how long the gameplay time should be according to the

level length (horizontally), this is decided depending on the player results, the

better the results, the longer the level. The minimum value is 5 seconds, the

maximum value is 30 seconds.

Figure 5.3 shows an example of rhythms that our system can create.

To calculate the number of elements for each rhythm’s value, we defined a difficulty

function that is shown in equation 5.7.

D1(p0, p1) =

{
D0 + SG if p1 ≥ p0,

D0 − SG if p1 < p0
(5.7)

Difficulty (D1(p0, p1)): p0 is the performance calculated in the previous level with

equation 5.5; p1 is the performance calculated in the current level with equation 5.5;

D0 is the difficulty of the previous level; S is a constant value to make the change

between level and level smoother; G is calculated with equation 5.3.

The difficulty for the current level is calculated using the difficulty of the previous

level plus a variation of the global value. This variation can take positive or negative
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Figure 5.3: Rhythm Representation

values depending on whether we make the level more difficult or easier. The constant

S represents a STEP value defined to make smooth changes of difficulty between

levels so players do not feel an abrupt change.

For our implementation, the value S was set to 0.125 (calculated empirically after

testing with other values). The value v is 1 if the difference between the performance

for the current level and the previous level is positive and -1 if the difference is

negative.

E1 = E0 + D1M (5.8)

Rhythm density (E1): E0 is the rhythm density calculated in the previous level;

D1 is the difficulty calculated with equation 5.7; M is the maximum value for rhythm

density.

L1 = L0 + D1N (5.9)

Rhythm length (L1): L0 is the rhythm length calculated in the previous level; D1

is the difficulty calculated with equation 5.7; N is the maximum value for rhythm

length.

The rhythm density and rhythm length are calculated using equation 5.8 and 5.9

respectively. Density and Length are directly proportional to difficulty.

We simplified the elements that could be built by our system to the simplest

elements in platformers, there are no special items or moving enemies, only the basic

features to show the rhythm-group method working with the rest of our system.
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Figure 5.4: Rhythm System Elements

Figure 5.5: Low performance player: Few challenges, easier to complete.

We selected three types of challenges for each jump type, it means, we have three

types for low jump, three for medium jump and three types for high jump, in total

nine different elements. The first element is a gap, a separation between platforms,

if the player falls through a gap, dies; the second element is a spike, the player dies

when touching a spike; finally an enemy that can be beaten by the player jumping on

its head. Figure 5.4 shows the geometry elements that the current geometry system

can create.

Figure 5.5 shows a piece of the level result for a low performance player, it’s an

easy level with not so many enemies or gaps; on the other hand, we can see the result

for a challenging level in figure 5.6 which is different from the low performance result,

with more enemies, gaps and challenges.
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Figure 5.6: High performance player: More challenges, more difficult to complete.

Figure 5.7: Experiments Process

5.5 Experiments & Results

Players were asked to complete five levels created automatically by our method

and they wore the biosensor while playing to record their brain activity and adapt

the difficulty of each level. Figure 5.7 shows the process.

5.5.1 Players and Environment

25 people between 21 and 30 years old, 7 (28%) women and 18 (72%) men com-

pleted the experiment. Before starting, players were asked: ”Have you played Super

Mario Bros before?” (A) and ”Have you completed Super Mario Bros?” (B).

For question A, only 3 people (12%) answered no, the rest (22 people, 88%)

answered yes ; for question B, 9 people (36%) said yes, the rest (16 people, 64%)

answered no.
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The game was played on a 15inch widescreen monitor of a Dell XPS LX502 laptop,

at approximately 60cm from the player, using an Xbox360 gamepad , with the left

thumbstick to move and A button to jump. Sound was played using the laptop’s

speakers at a volume of 25%.

5.5.2 General Features

For the first level that players played, we set the difficulty to 50%. Depending on

the results of the first level the second level was created to adapt it to the player’s

results. Same process is repeated until players completed five levels.

5.5.3 Limitations

We faced some issues with the biosensor when performing the experiments. Some-

times the connection between the device and the computer (bluetooth) was not strong

enough to establish a successful connection.

Besides connection issues, we found that after players wear the device for more

than 10 min., they didn’t feel comfortable, which lead us to decided to keep the

experiments short.

For some players the device just didn’t fit well, regardless its adjustable function-

ality, sometimes is not easy to fit comfortably in all types of players.

The result of those players that experienced problems with the connection while

playing, nuisance or any kind of bad experience that could affect the results were

excluded from the experiment.

In addition to Neurosky related limitations, we consider that this method would

be suitable for games that involve jumping as their main mechanic and games that

involve some kind of rhythm in their core mechanics. Runners, 2D or 3D, sidescroller

platformers and rhythm games are among the types of games we consider this would

be a good method for.

5.5.4 Analysis

The overall results for all players across time are shown in figure 5.8 (A). The

graph shows the average results for all 25 players, attention, performance, global

value (attention & performance) and difficulty.
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Figure 5.8: Experiments results: Including EEG (A), Excluding EEG (B)

5.5.4.1 General Results

Comparing the behavior of the global value (green curve) and the difficulty (purple

curve) from level to level, we can see how in the end of the experiment both curves

get close to each other, an increasing difficulty higher than the global value. This

means that the method is matching the difficulty to the player’s skills.

In addition there is a balance between attention (blue curve) and performance

(red curve), the method combines both values and makes sure that both of them

contribute with the final calculation. For example we can see the result from level 2

to level 3, performance decreases and the attention value increases, the result (green

curve) is a stable value, which turns into an increase of difficulty, keeping the pace

and attention for players.

Difficulty increases, comparing level 1 and level 5, showing that the level of chal-

lenge is changing, from 0.5 to 0.66, an overall increase of the difficulty until gets closer

to the global value, we estimate that difficulty in upcoming levels would decrease a

little and then raise along with the global value. We have to test with more levels to

confirm this.

With the challenge increasing, we can also see how the global value changes, in

the end of the experiment it ends up slightly higher than the beginning, meaning that

players perform better with a higher difficulty.

If we performed experiments including more levels, we would expect that curves

vary together, specially the global value and difficulty, the expectation is to keep in-

creasing smoothly and both of them close to each other, demonstrating the adaptation

process. We still have to make more experiments to confirm this.

All the results for the experiment conducted using EEG can be seen in table 5.1,

these results include all players (25) and the data from level 1 to level 5. Figure 5.9
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Figure 5.9: Rhythm Group Theory Results: All Results (With EEG)

shows a box plot applied to these results.

In addition, table 5.2 shows all the results for the experiment conducted without

EEG, this includes data from 29 players and from levels 1 to 5. Figure 5.10 shows a

box plot applied to these results.
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Table 5.1: Rhythm Group Theory Results. A: Attention, P: Performance, C: Attention & Performace, D: Difficulty

Pla Level 1 Level 2 Level 3 Level 4 Level 5
A. P. C. D. A. P. C. D. A. P. C. D. A. P. C. D. A. P. C. D.

1 0.30 0.98 0.78 0.50 0.14 0.72 0.54 0.60 0.29 1.01 0.79 0.54 0.81 0.59 0.65 0.64 0.40 0.72 0.62 0.59
2 0.43 0.57 0.53 0.50 0.61 0.58 0.58 0.57 0.60 0.31 0.39 0.64 0.58 0.63 0.61 0.56 0.46 0.50 0.48 0.64
3 0.80 0.64 0.69 0.50 0.54 0.90 0.79 0.59 0.73 0.59 0.63 0.68 0.65 0.94 0.86 0.64 0.61 0.52 0.54 0.75
4 0.56 0.51 0.52 0.50 0.77 0.81 0.81 0.57 0.66 0.89 0.82 0.67 0.61 0.39 0.45 0.77 0.64 0.85 0.79 0.70
5 0.74 0.43 0.52 0.50 0.63 0.60 0.61 0.56 0.70 0.87 0.82 0.64 0.71 0.59 0.62 0.74 0.69 0.64 0.65 0.70
6 0.47 0.47 0.46 0.50 0.58 0.92 0.82 0.43 0.65 0.42 0.48 0.54 0.51 0.65 0.60 0.47 0.48 0.71 0.64 0.55
7 0.66 0.46 0.52 0.50 0.43 0.39 0.39 0.57 0.61 0.88 0.80 0.49 0.57 0.47 0.49 0.59 0.58 0.87 0.79 0.53
8 0.90 0.57 0.66 0.50 0.82 0.59 0.65 0.58 0.89 0.99 0.96 0.54 0.92 0.73 0.78 0.66 0.95 0.70 0.77 0.63
9 0.49 0.99 0.84 0.50 0.73 0.99 0.91 0.60 0.63 0.98 0.87 0.72 0.67 1.01 0.91 0.70 0.81 0.58 0.64 0.82
10 0.38 0.85 0.71 0.50 0.61 0.66 0.64 0.59 0.58 0.68 0.65 0.54 0.58 0.96 0.85 0.62 0.56 0.61 0.59 0.73
11 0.08 0.88 0.64 0.50 0.61 0.99 0.88 0.58 0.53 0.60 0.58 0.69 0.45 0.66 0.59 0.64 0.55 0.61 0.59 0.71
12 0.48 0.98 0.83 0.50 0.59 0.67 0.64 0.60 0.71 0.97 0.89 0.56 0.56 0.59 0.57 0.67 0.67 0.94 0.86 0.62
13 0.47 0.91 0.78 0.50 0.37 0.67 0.58 0.60 0.80 0.65 0.69 0.54 0.65 0.96 0.87 0.63 0.37 0.62 0.54 0.74
14 0.04 0.66 0.47 0.50 0.23 0.96 0.74 0.43 0.31 0.99 0.78 0.53 0.35 0.66 0.56 0.62 0.43 0.99 0.82 0.57
15 0.44 0.41 0.41 0.50 0.47 0.96 0.81 0.43 0.31 0.63 0.53 0.53 0.40 0.65 0.57 0.47 0.36 0.68 0.58 0.54
16 0.50 0.58 0.55 0.50 0.79 0.49 0.57 0.57 0.67 0.56 0.58 0.64 0.73 0.45 0.52 0.71 0.90 0.56 0.65 0.65
17 0.68 0.57 0.60 0.50 0.56 0.57 0.56 0.58 0.54 0.52 0.52 0.52 0.54 0.60 0.58 0.46 0.47 0.49 0.48 0.53
18 0.65 0.77 0.74 0.50 0.49 0.84 0.74 0.59 0.76 0.98 0.92 0.56 0.61 0.95 0.85 0.67 0.55 0.96 0.84 0.66
19 0.72 0.54 0.59 0.50 0.57 0.94 0.83 0.57 0.57 0.54 0.54 0.68 0.54 0.93 0.82 0.62 0.68 0.64 0.65 0.72
20 0.43 0.57 0.53 0.50 0.70 0.54 0.58 0.57 0.87 0.69 0.74 0.64 0.87 0.57 0.66 0.73 0.85 0.60 0.67 0.69
21 0.41 0.56 0.51 0.50 0.64 0.66 0.65 0.56 0.48 0.46 0.46 0.65 0.55 0.99 0.86 0.58 0.55 0.25 0.34 0.68
22 0.33 0.91 0.74 0.50 0.33 0.53 0.46 0.59 0.52 0.97 0.83 0.52 0.47 0.50 0.48 0.63 0.54 0.66 0.62 0.56
23 0.41 0.57 0.51 0.50 0.43 0.93 0.78 0.56 0.55 0.66 0.62 0.66 0.47 0.92 0.79 0.61 0.41 0.48 0.45 0.71
24 0.39 0.56 0.50 0.50 0.64 0.60 0.60 0.56 0.60 0.51 0.53 0.64 0.58 0.96 0.85 0.58 0.54 0.86 0.77 0.69
25 0.37 0.85 0.71 0.50 0.62 0.88 0.80 0.59 0.49 0.44 0.45 0.69 0.53 0.43 0.45 0.62 0.37 0.44 0.41 0.68
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Figure 5.10: Rhythm Group Theory Results: All Results (Without EEG)

5.5.4.2 Player Groups

In addition to the general results of our experiments, we separated and classified

players’ results by experience. The main reason to do this is that these players have

features in common and it makes it easier and more meaningful when analyzing the

results.

Figure 5.11 shows the results for all grouped features. We know that the number

of players from graph B is low however, we can see how the behavior for both types

of groups (A and B) in the end is similar, curves get closer in the end, which means

that for both types of players the algorithm is adapting the difficulty.

One of the interesting things about this particular group is we can see how the

difficulty becomes lower to match players’ results and in the end, curves get closer,

reducing the gap while playing.

Comparing graphs C and D we can deduce that players from group C are more

experienced than players from group D. In fact, by the overall performance of each

group (73% for group C and 66% for group D), we can assume this. We can see

that for players with different experience, the algorithm is, step by step, adapting to

change and offer a suitable experience. Curves for both groups end up with a similar

shape.
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Table 5.2: Rhythm Group Theory Results (Without EEG)

Pla Level 1 Level 2 Level 3 Level 4 Level 5
Perf. Diff. Perf. Diff. Perf. Diff. Perf. Diff. Perf. Diff.

1 70.00 50.00 57.42 58.75 98.92 53.42 38.50 65.79 71.29 58.10
2 88.29 50.00 52.12 61.04 97.85 55.05 56.89 67.28 58.78 61.89
3 81.29 50.00 33.66 60.16 61.10 51.86 65.90 59.50 82.72 67.77
4 56.70 50.00 32.13 57.09 57.10 48.60 53.25 55.74 55.49 49.90
5 85.35 50.00 95.64 60.67 59.86 72.62 94.49 67.60 47.86 79.41
6 92.92 50.00 53.42 61.62 67.81 55.79 53.56 64.27 94.52 58.46
7 64.95 50.00 51.49 58.12 70.57 52.05 71.73 60.88 71.65 69.84
8 51.59 50.00 93.83 56.45 93.75 68.18 93.82 67.40 62.77 79.12
9 53.65 50.00 71.13 56.71 68.23 65.60 99.37 61.63 69.76 74.05
10 94.61 50.00 72.12 61.83 100.00 58.35 63.73 70.95 72.42 66.41
11 97.78 50.00 99.68 62.22 98.72 74.68 99.12 74.52 94.74 86.91
12 95.38 50.00 57.17 61.92 71.63 56.57 98.24 65.52 65.56 77.80
13 77.75 50.00 92.75 59.72 49.01 71.31 51.59 64.93 52.22 71.39
14 93.23 50.00 69.64 61.65 60.97 57.85 71.44 52.98 70.85 61.91
15 86.02 50.00 97.67 60.75 91.22 72.96 97.87 71.86 50.25 84.10
16 80.23 50.00 49.57 60.02 93.02 53.72 62.37 65.35 69.84 60.64
17 89.87 50.00 87.11 61.23 97.24 59.62 92.98 71.77 65.32 70.90
18 97.46 50.00 97.94 62.18 96.49 74.42 97.32 73.98 90.07 86.15
19 65.38 50.00 86.23 58.17 57.01 68.93 70.12 63.55 96.05 72.30
20 95.09 50.00 98.25 61.89 60.20 74.16 99.23 69.19 98.51 81.60
21 55.57 50.00 68.69 56.94 97.93 65.53 36.21 77.77 68.15 69.80
22 97.78 50.00 96.23 62.22 97.95 61.75 46.35 73.99 99.20 67.29
23 44.23 50.00 54.51 43.02 50.68 49.84 57.05 43.68 63.05 50.81
24 97.78 50.00 63.77 62.22 61.71 57.69 71.69 52.91 98.42 61.86
25 86.34 50.00 55.76 60.79 96.37 55.26 93.33 67.30 66.77 66.48
26 62.73 50 92.5 57.84 62.17 69.4 56.65 64.67 99.59 59.25
27 91.26 50 95.23 61.41 91.66 73.31 55.03 72.26 94.58 66.64
28 84.82 50 85.77 60.6 48.51 71.32 92.47 64.89 89.29 76.45
29 86.87 50 90.89 60.85 93.99 72.22 48.03 83.97 87.67 77.47
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Figure 5.11: Results for Groups of Players

The difficulty for almost all groups adapts at a constant pace. Values of attention,

difficulty and performance start at a particular point for each graph and in the end

of the experiment they increase, it means players are getting better at the game and

also challenge is increasing accordingly.

In general, for different types of players, with different characteristics and different

experience we can see how the method is adapting, performance and attention are

adjusting values of difficulty, the green and purple curve end close to each other.

We expect that if we perform experiments with more players and levels, the diffi-

culty curve and globals (att. perf.) curve will keep moving at the same pace, ideally

increasing with the player’s abilities.

5.5.4.3 Players’ Feedback

After playing each level of the game, we interviewed few players and collected

feedback of their experience while playing. This section shows a short sample of

those interviews.

All players said after that the game was fun to play however, they also mentioned

that some levels (the easiest ones) are too simple and they would enjoy levels with

more elements and challenges.

As a recurring comment from high skilled players, they all agree that difficult levels

are more interesting than easy levels, in contrast, low skilled players felt better with

easier levels but they also said that a higher level of challenge would be interesting.
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When we designed experiments for this research, we implemented a game with

the most basic elements from a platformer, to adjust the game and make it fit for

the Rhythm-group theory parameters, in addition, graphics and in-game feedback are

also very basic. Based on the feedback from players and the results of the experiment

we should increase the level of challenge of the game, adding variety and improving

the implementation of it.

5.5.4.4 EEG Influence

In order to validate the results obtained from our approach of combining player’s

performance and EEG to adapt the difficulty and to be able to prove the value and

novelty of including this new component, we conducted new experiments without the

EEG data.

Using the same experiment layout shown in figure 5.7 and with the same approach

described in figure 5.1, we removed the biosensor data from the calculation and gath-

ered results from 29 players. Results from this experiment can be seen in figure 5.8

(B).

Comparing the results for the approach with and without the EEG component,

we can observe significant differences.

As we explained before, the adaptation appears for the result with EEG at the

end of the experiment, where difficulty and performance/attention values are getting

close to each other, in contrast, we can see that for the experiment without EEG,

these values are more separated, this demonstrates that the adaptation with EEG is

better, in less time, was able to adjust the difficulty accordingly.

Results for the experiment without EEG show how the adaptation occurs abruptly,

between levels we can see that changes are not smooth. One could argue that increas-

ing or decreasing a constant in the calculation to soften these changes, the abrupt

change problem would be solved, however, this could make the game less interesting

by lacking variety (levels would be too similar for too long).

We can see a behavior for the experiments without EEG, show a pattern where

performances decreases and increases in each level, this is due to the difficulty being

too high or too low in the calculation; on the other hand we can see the results for

the approach with EEG, changes occur smoothly and slower than without EEG.
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5.6 Discussion

The novelty of our method lies in the introduction of Brain Computer Interface

elements for dynamically adapting a game according to the player. We demonstrated

that using attention values to determine whether to increase or decrease the difficulty

of a game, contributes to better calculate the difficulty of a game and to offer an

adaptive experience.

In addition, the combination of the attention values with rhythm-group theory, is

a new way to effectively create levels that adapt to the player in 2D platformers.

The hypothesis presented at the beginning of this manuscript: Brain computer

interfaces (BCI) can contribute to the adaptation of games, was demonstrated to be

true, by conducting experiments with and without the BCI component and obtaining

better results with the inclusion of the brain related device.

We can see the influence of including the EEG component by looking at the results

in figure 5.8. The adaptation occurs faster for the experiments that included the

EEG component than those that didn’t include it. This proves that brain computer

devices can contribute positively to adapt the difficulty of a game and the overall

player experience.

5.7 Chapter Conclusions

We created a new method that is capable of adapting the level of challenge for

players depending on their performance and degree of attention (using EEG data).

The adaptation matches different types of player’s skills and status, not only ex-

perienced players but also inexperienced players, people with different characteristics.

We also validated our results by comparing the results with an approach that didn’t

include the EEG component, demonstrating that the inclusion of brain waves related

data can lead to better results.

Due to the biosensor issues and limitations, also the necessity of having the device

for the process, we do not envision this method for commercial use yet, however, with a

better performance and more comfortable device, this method could be implemented

in other genres that involve jumping as a core mechanic or elements in which the

rhythm group theory can help to add a sense of harmony to the game. Among the

types of games we consider this method could be suitable for are: endless runners,

2D or 3D side-scrolling platformer or rhythm games
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For game developers, this would be a good playtesting tool, this method would

enable them to gather helpful information to create better levels. For instance, when

designing a platformer, developers could create a base design and iterate on it dy-

namically using our method, evaluate and improve the design.

The method presented in this section could be improved, testing with different

EEG biosensors, planning and performing more experiments, testing with more play-

ers and modifying the initial values to compare which values adapt the best to this

approach. In addition, it would be good to include other factors on the difficulty cal-

culation, so far we have only tested with number of elements in the level, we should

also consider position and relationship between elements, which describes another

level of difficulty.

We also consider that it would be meaningful to include new elements, other than

difficulty to evaluate the player’s experience. The harmony that gameplay, graphics

and sounds constitute all together to shape experiences for players influence how these

players perceive the game in general.
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Chapter 6

Graph Grammars: Difficulty
Analysis

6.1 Introduction

As explained in previous chapters, this part of the research was conducted with

the guidance of professor Koji Mikami (supervisor) and professor Kunio Kondo, who

supported the author from the phase of planning and design to implementation and

analysis.

Following our motivation of finding better ways to improve the overall experience

for players by adapting the degree of difficulty of games they play, we want to design a

new method that automatically creates levels with a specific level of difficulty. Using

this design, we would be able to adapt the difficulty accurately for a better overall

experience.

This section consists of a preliminary exploration conducted to test the base calcu-

lations of our proposal. This new method combines Dynamic Difficulty Adjustment

(DDA) and Graph Grammars, which is a Procedural Content Generation (PCG)

method that enables the creation of levels with high variation and expressiveness.

We introduce our vision on how to apply Graph Grammars to create multi-path

levels in 2D platformers with specific degree of difficulty and show the results of

experiments designed to test the player’s perception of difficulty, in addition, we

explain the relationship between the effectiveness of our method and the calculation

of difficulty in general.

Results show that there is a strong linear relationship between the difficulty per-

ceived by participants of our experiments and the difficulty calculated by the algo-

rithm we created, with a correlation coefficient of 0.75. In addition, the correlation

coefficient of difficulty and player’s performance was -0.69, a moderate correlation
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that shows both variables are inversely proportional. These results indicate that the

calculations are heading to the right direction.

6.2 Related Work

The new method we decided to use, Graph Grammars, was originally designed for

automatic dungeon creation by David Adams [72] for his Bachelor’s thesis research.

We found in previous research that this technique has been tested and compared

against other methods for automatic content creation [73], having interesting results

creating dungeon maps driven by gameplay. In addition to this, the Graph Grammars

method was used in a research about a learning game to teach parallel programming

[74], which was partially successful showing positive results in automatic puzzle cre-

ation.

Some researchers have explored the idea of applying the same method to 2D

platformers: proposing a graph-based representation of Super Mario Bros levels us-

ing graph grammars [20],[21],[22]. Joris Dormans and Sander Bakkes have focused

on using generative graph grammars to procedurally generate missions for action-

adventure games, which due to their nature of nonlinear structures creation make

them a suitable solution for games that involve exploration [75],[76]; in this research

they demonstrated that graph grammars could be a powerful tool to use the advan-

tages of procedural generation and human design in the creation of mission and level

design.

Using a dungeon crawler game case of study, researchers concluded that graph

grammars can be expressive enough to construct design levels in this type of games,

leading to the creation of a variety of possibilities with rich and interesting results for

players to explore and enjoy [77].

Besides Graph Grammars, we focused this particular study on perceived diffi-

culty, defined as relative difficulty minus the player’s experience at meeting specific

challenges [78].

A previous study that involves Bayesian optimization shows that there is a signif-

icant relevance between perceived difficulty and engagement [79]. Researchers found

that players attributed changes in their performance to their own capacity, which was

in reality affected by the covert manipulation of difficulty done by researchers.

We consider that our contribution adds up to previous research on the importance

of examining difficulty from the player’s point of view when analyzing games [80] and
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the evaluation of different factors (including difficulty) on the player’s performance

[81].

6.3 Graph Grammars

The concept of graph grammars involves the idea of having a grammar that han-

dles graphs instead of strings. One of the reasons for replacing strings by graphs when

automatically creating levels is that due to their nature, graphs are a good fit to par-

tition and represent the 2D space. Among the advantages of using graph grammars

to build levels instead of other kinds of grammars is that they provide much more

flexibility when creating variation and randomness. In addition, they allow creating

complex levels in a more natural way [72].

The following list shows a formal definition of a directed graph: G := (V,E,lV, lE,

s, t), where:

• V(G) := V is a finite set of vertices

• E(G) := E is a finite set of edges

• lV(G) : V → LV is a labeling function for vertices

• lE(G) : V → LE is a labeling function for edges

• s(G) : E → V assigns each edge to its source

• t(G) : E → V assigns each edge to its target

A graph grammar is formally defined as a tuple (A,P) where A is a non-empty

initial graph and P a set of graph grammar productions. Most approaches of graph

production definition concur that each production consists of two parts: left-hand

side and right-hand side. Being the left side of the production the one that defines

how to replace and transform graphs in the grammar [72]. The set of productions

defined in the method we propose are shown in section 6.3.1.

The method we designed to implement Graph Grammars in 2D platformers con-

sists of three different systems that we called: topological map system; area designa-

tion system and a graphical map system. In a very brief way, the topological map

defines how many nodes and how are the nodes connected in the graph; then, the

area designation system assigns a type to each node in the graph; finally the graphical

map system sets a representative game object for each node in the graph. Figure 6.1

shows the general approach of our method.
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Figure 6.1: Graph Grammars Creation Approach:. The topological map creates
a graph. The area divided map system assigns a type to each node of the graph.
Finally the output area graph is used by the graphical map system to create a level.

6.3.1 Topological Map

This map is the logical representation of the level. The following rules are the set

of productions designed to define the grammar used to create the topological map.

1. Starting Rule: This production ensures that there is always a start and there is

always an end. It includes a start node S connected directly to the ending node

E.

2. Adding Rule: The adding rule enables the algorithm to include more nodes

between nodes. We have two different types of adding rules:

(a) Linear adding rule: the node is created in one of the extremes of the path,

increasing the length of this path.

(b) Non-linear adding rule: The node is created in a different path to the one

that is being added. This usually introduces a new level in the system.

3. Linking Rule: The linking rule takes a couple of nodes and links them. This

link could be directed or not directed. Two main cases can be considered when

linking nodes:

(a) Case A: Two nodes of the same path are connected

(b) Case B: Two nodes of different paths are connected

4. Changing Rule: The changing rule enables the algorithm to decide a direction

change after connecting all nodes.

5. Deleting Rule: This production says that we can eliminate nodes from a graph

when needed.
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Figure 6.2: Example of a topological map. As we can see, there is a main path
from S (start) to E (end) and, in addition, a second level (secondary path) with
interconnected nodes.

6. Ending Rule: This production ensures that the result level can be cleared. In

addition, it will ensure that there is always a complete path from the start of

the level to the goal.

In this part of the process there are three main steps to ensure that the map is

well created and will output an expected result, these are: main path, secondary path

and arcs direction.

1. Main Path: This is the path that connects the start of the level to the end.

This ensures that the level can always be finished by the player. This path is

mandatory in every level.

2. Secondary Path: All paths that are connected to the main path and are not the

main path, are called secondary paths.

3. Direction: The last segment of map generation enables the algorithm to change

the direction of each arc to build a unique level. This adds variety and diversity

and reduces the probabilities of having two similar levels.

All the previously explained steps guarantee the construction of a final map and

sets the basis to create an output that can be used as a playable level in the end of

the process. An example of a topological map can be seen in figure 6.2.

6.3.2 Area Designation Map

The result graph created by the topological system passes through a system that

takes every node in the graph and assigns an area type, areas can be ”safe areas” or

”dangerous areas”.
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Figure 6.3: Example of an area divided map. Using the topological map from 6.2,
this is an example of a possible area divided map, after assigning safe and dangerous
areas.

A safe area is defined as a platform (of any length) where players can stand safely,

it means, not harming game objects will be found in this type of area. Examples

of this type of areas are: empty platforms (no enemies) and platforms that contain

elements such as obstacles to stand on them, etc.

A dangerous area is defined as a platform (of any length) where players can die,

usually represented by areas that contain enemies that can harm the player in any

way, examples of this type of areas are: movable platforms, platforms with enemies,

platforms that fall, etc.

The starting and ending node are both set to safe areas, however it is possible to

modify these rules and adapt them depending on the designer’s needs. An example

of an area divided map that matches the topological map in figure 6.2 can be seen in

figure 6.3.

The number of dangerous areas is decided using the expected difficulty for the

level and multiply that by the total number of areas in the level. The calculation can

be seen in equation 6.1.

a = ldn (6.1)

Where:

• a: Number of dangerous areas

• ld: Expected difficulty for the level

• n: Number of nodes in the graph

6.3.3 Graphical Map

The graphical map is the physical creation of the elements in the level. The main

function of this system is to decide where to put each game object on the screen and
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Figure 6.4: Example of graphical map. Using the area divided map of 6.3, this is
an example of a possible graphical map.

how. This process translates a topological map to a graphical positions on the screen.

Designers can decide and adapt this system according to the type of game elements

that exist in their games. An example of a graphical map can be seen in figure 6.4.

6.4 Difficulty

The approach we took to calculate difficulty in a level is: assign difficulty values

to each area in the graph and use those difficulties to calculate a general difficulty for

the level. The general calculation of difficulty for a level can be seen in equation 6.2.

ld =
n

m
V1 +

n∑
i=1

diV2 (6.2)

Where:

• ld: Difficulty calculated for one level

• n: Number of dangerous areas in the level

• m: Number of total areas in the level

• di: Difficulty of each area (see equation 6.3)

• Vi: Weights that represent how much influence the component has

As preliminary parameters for this research we decided to start with V1 to 0.5

and V2 to 0.5 as well, due to the influence that both components have in the overall

difficulty.

The calculation for each area is carried out using the game objects that are on

it, difficulty values are assigned (by the designer, depending on the game) to each
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game object, for calculation difficulty only dangerous objects count.The difficulty

calculation for each area is shown in equation 6.3.

ad =
n

m
W1 +

n∑
i=1

diW2 (6.3)

Where:

• ad: Difficulty calculated for one area

• n: Number of enemies in the area

• m: Maximum number of enemies in that area

• di: Difficulty of each enemy (see table 6.1)

• Wi: Weights that represent how much influence the component has

For this research, we set W1 to 0.9 and W2 to 0.1. As preliminary values we

chose these two because the number of elements in a platform affects directly the

performance, the more enemies, the higher the chance to get hit by them which

means the performance would be lower.

To calculate the difficulty for each enemy, we interpret each skill shown in table

6.1 as one point of difficulty. Calculated difficulties are explained as follows:

1. Moves X Axis: Enemies that can walk or run. Moving makes an enemy more

difficult than not moving.

2. Moves Y Axis: Enemies that can fall, jump, etc. Moving makes an enemy more

difficult than not moving.

3. Shoots: An enemy that can shoot is more difficult than one that cannot shoot.

Table 6.1: Enemies features: Binary representation for the skills: 1=true,0=false
Enemies Difficulties

Enemy 1 Enemy 2 Enemy 3 Enemy 4 Enemy 5
Moves X Axis 0 0 0 1 1
Moves Y Axis 0 1 1 0 0
Shoots 1 0 0 0 0
Beatable 1 0 0 0 1
Visible 1 1 0 1 1
Timing Attack 1 1 1 0 0
Aim 1 0 0 0 0
Player Can Stand 0 0 1 0 0
Total 4 4 4 3 2
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4. Beatable: Enemies that can be beaten by the player (jumping on its head), an

enemy that cannot be beaten is more difficult than an enemy that can.

5. Visible: Enemies can hide, this makes it more difficult than an enemy that

cannot hide.

6. Timing attack: The player has to be on alert when the enemy attacks, this adds

a point of difficulty.

7. Aim: Aims at the player before attacking, this makes the enemy smarter, one

more point of difficulty.

8. Player can stand: If the player can stand on this enemy sometimes and not be

harmed by it, the enemy becomes easier. We add 1 point to all those enemies

that the player cannot stand on them.

Depending on the kind of game that is being designed by the developers, the

values in the difficulties table could vary to adapt to a more accurate result. For

simplicity we decided to give one point of difficulty to each skill.

6.5 Player Performance

The player’s performance calculation involves how many times is the player hit

by an enemy, level clear time and number of collected coins. Equation 6.4 shows the

calculation of the performance for this method.

p =
1

(d + 1)
X1 +

eT

gT
X2 +

c

m
X3 (6.4)

Where:

• p: Calculated performance

• d: Number of deaths

• eT: Level estimated time (15 seconds)

• gT: Level cleared time (cannot be less than eT)

• c: Number of collected coins

• m: Maximum number of coins per level (3 coins)
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Figure 6.5: Game Elements. A: Player; B: Enemies, beatable and unbeatable; C:
Coins, motivation to explore; D: Gap; E: Goal; F: Player’s health and coins (3 per
level); G: Game Time; H: Current Level.

• Xi: Weights that represent how much influence the component has

For this study we started testing with a set of parameters that we consider is the

most suitable combination of values: X1: 0.5, X2: 0.15 and X3: 0.35, decided by the

importance of each parameter in the equation.

6.6 Implementation and Experiments

The game is a side-scrolling 2D platformer in which the player has to reach a goal

placed on the right-most part of the level. The player is also required to overcome

very simple challenges: gaps between platforms, beatable enemies and unbeatable

enemies, both types of enemies static. We also included 3 collectable coins to increase

motivation for the player to explore different paths. Figure 6.5 shows the elements of

the implemented game.

Players were required to play and clear 12 different levels generated automatically

by our system. The first three levels were part of a tutorial to give players a sense of

difficulty and rating. After finishing one level, players were taken to a results screen

that showed a set of 10 different options to rate the level: [1-10]; being 1 the easiest

and 10 the hardest values. Numbers were presented as integers to the player but they

were normalized (0,1) for our internal calculations. The whole flow of the experiment

can be seen in Figure 6.6.

We collected data from 16 different players. All participants were between 21 –

40 years old; almost all of them with previous experience playing Super Mario Bros

(which we asked to have background information about their skills), one of the players

71



Figure 6.6: Experiments. Players played three tutorial levels and nine levels for
which difficulty was randomly calculated. After playing a level players rated its
difficulty.

(6.25%) has never played Super Mario Bros before, only the 7 players (43.75%) have

cleared the game at least once.

For our implementation, we consider the following parameters: minimum number

of nodes in the main path, maximum number of nodes, maximum number of secondary

paths, minimum number of branch nodes and maximum number of branch nodes.

1. Minimum number of nodes in the main path

2. Maximum number of nodes in the graph

3. Minimum number of secondary paths

4. Maximum number of secondary paths

5. Minimum number of branch nodes

6. Maximum number of branch nodes

In our experiments, the parameters of this system we set to the minimum possible

values for simplicity. The whole creation of a topological graph is done randomly and

automatically. Since this step of the process does not involve any graphical elements,

we do not consider difficulty when creating this first part of the graph.

72



Graph Grammars System

In our implementation, the Graph Grammars method involves three different sub-

systems: topological map system, area divided map system and graphical map system,

each one with a clearly different purpose.

Topological Map: Graph Creation

A set of parameters are important to take into consideration to construct a graph,

these are: minimum number of nodes in the main path, maximum number of nodes,

maximum number of secondary paths, minimum number of branch nodes and maxi-

mum number of branch nodes. For our research we used the following values:

1. Minimum number of nodes in the main path: number of starting nodes between

the node S (start node) and node E (end node). We set this value to 3.

2. Maximum number of nodes: Including all paths, main and secondary, the max-

imum number of nodes was set to 15.

3. Minimum number of secondary paths: number of paths (besides the main path)

to start. The algorithm can create graphs with no secondary paths.

4. Maximum number of secondary paths: For simplicity, this parameter was set

to 1, it means, in total, a level created by this algorithm could have 2 paths.

5. Minimum number of branch nodes: it’s related to the minimum number of nodes

that can be created as a branch of an existing node. We set this parameter to

1.

6. Maximum number of branch nodes: it’s related to the maximum number of

nodes that can be created as a branch of an existing node. We set this parameter

to 3.

We set these parameters to the minimum possible values for simplicity and to

demonstrate the capabilities of our method.

Figure 6.7 and 6.8 show are examples of levels created for a low performance player

and a high performance player respectively. Both results were generated using the

Graph Grammars implementation explained in this section.
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Figure 6.7: Low performance player. A level created for a low performance player,
few challenges, easier to clear

Figure 6.8: High performance player. A level created for a high performance
player, more challenges, more difficult to clear.

Area Divided Map

In addition to assigning a type to each node (area) of the graph, this system

calculates the difficulty of each dangerous are depending on the expected difficulty of

the whole level. The difficulty calculation for each area is shown in equation 6.3.

Where:

• ad: Difficulty calculated for one area

• n: Number of enemies in the area

• m: Maximum number of enemies in that area

• di: Difficulty of each enemy (see table 6.1)

For this research, we set W1 to 0.9 and W2 to 0.1. As preliminary values we

chose these two because the number of elements in a platform affects directly the

performance, the more enemies, the higher the chance to get hit by them which

means the performance would be lower.
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To calculate the difficulty for each enemy, we interpret each skill shown in table

6.1 as one point of difficulty. Calculated difficulties are explained as follows:

1. Moves X Axis: It means the enemy can move in the X axis, enemies that can

walk or run. Moving makes an enemy more difficult than not moving, if the

enemy moves it gets one point o difficulty.

2. Moves Y Axis: It means the enemy can move in the Y axis, enemies that can

fall, jump, etc. Moving makes an enemy more difficult than not moving, if the

enemy moves it gets one point o difficulty.

3. Shoots: An enemy that can shoot is more difficult than one that cannot shoot,

shooting gives one point of difficulty to an enemy.

4. Beatable: The enemy can be beaten by the player (jumping on its head), an

enemy that cannot be beaten is more difficult than an enemy that can, an

unbeatable enemy gets one point of difficulty.

5. Visible: Enemies can hide (like enemy 3), this makes it more difficult than an

enemy that cannot hide. Hiding enemies get one point of difficulty.

6. Timing attack: since the player has to be on alert when the enemy attacks, this

adds a point of difficulty to this kind of enemy.

7. Aim: Aims at the player before attacking, this makes the enemy smarter, one

more point of difficulty.

8. Player can stand: If the player can stand on this enemy sometimes and not be

harmed by it, the enemy becomes easier. We add 1 point to all those enemies

that the player cannot stand on them.

Depending on the kind of game that is being designed by the developers, the

values in the difficulties table could vary to adapt to a more accurate result. For

simplicity we decided to give one point of difficulty to each skill.

Number of dangerous areas

To decide the number of dangerous areas, we use the expected difficulty for the

level and multiply that by the total number of areas in the level. The calculation can

be seen in equation 6.1.
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Graphical Map: Level Creation

An explanation on how to create game objects for each area is as follows.

1. Coins: Coins can be placed in any type of area, safe or dangerous and there is a

fixed amount of coins per level (3 coins) so we randomly choose 3 areas (could

be the same area) and decide where the coins will be.

2. Safe Areas: When geometrically construction safe areas, we can decide to add a

coin, a harmless obstacle or nothing. Coins have priority because it is mandatory

that each area with a coin shows that coin somewhere. After deciding where the

coin should be placed, the rest of the available spaces in the are set to having

an obstacle or being empty. We do this randomly.

3. Dangerous Areas: To decide what enemies will be placed in a dangerous area,

we use the same approach that we used to calculate how difficult an area should

be but instead of using the whole level’s difficulty, we use the area’s difficulty

and distribute the enemies on the area in a random way.

6.7 Results and Analysis

We calculated the linear regression of the computed difficulty, perceived difficulty

and performance in two different plots. Figure 6.9 shows the results of the calcu-

lated difficulty and perceived difficulty, figure 6.10 shows the results of the calculated

difficulty and performance calculated by the algorithm.

All the results for this experiment can be seen in table 6.2, these include all players

(11) and the data from level 1 to level 5. In addition, figure 6.11 shows a box plot

applied to these results.

6.7.1 Difficulty Calculation

The correlation coefficient for calculated vs perceived difficulty variables was 0.75,

which is considered a strong correlation (more than 0.7) using statistical basics. This

means that both results are strongly related, which demonstrates that the approach

of the calculations of difficulty in our algorithm are heading in the right direction.

One of the reasons that these results might have been affected is the way the

experiment was designed, each level’s difficulty was decided randomly during the

experiment, with no particular order in way the difficulty was presented to players. We
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Table 6.2: Graph Grammars Results

Player Level Difficulty Performance Player Level Difficulty Performance

1

1 0.1 0.937004

7

1 0.1 0.936488
2 0.217126 0.955643 2 0.217061 0.433379
3 0.336581 0.927989 3 0.146233 0.923474
4 0.327579 0.423869 4 0.261668 0.936667
5 0.255563 0.91838 5 0.378751 0.945404

2

1 0.1 0.888843

8

1 0.1 0.938433
2 0.211105 0.930866 2 0.217304 0.942267
3 0.327464 0.0842169 3 0.335088 0.941259
4 0.212991 0.0874164 4 0.327745 0.4258
5 0.223918 0.60762 5 0.25597 0.944469

3

1 0.1 0.943615

9

1 0.1 0.931607
2 0.217952 0.443859 2 0.216451 0.953831
3 0.148434 0.943801 3 0.33568 0.91068
4 0.266409 0.942995 4 0.324515 0.931903
5 0.259284 0.438822 5 0.441003 0.429805

4

1 0.1 0.941581

10

1 0.1 0.874136
2 0.217698 0.469794 2 0.209267 0.385828
3 0.151422 0.934526 3 0.132495 0.929827
4 0.268238 0.414802 4 0.248724 0.92858
5 0.195088 0.937996 5 0.239796 0.401388

5

1 0.1 0.920629

11

1 0.1 0.964199
2 0.0900787 0.897157 2 0.220525 0.409045
3 0.0772233 0.919488 3 0.146655 0.937766
4 0.192159 0.919229 4 0.263876 0.90859
5 0.182063 0.436498 5 0.25245 0.426269

6

1 0.1 0.410059
2 0.0262574 0.410704
3 0.0775954 0.536723
4 0.0196858 0.40721
5 -0.054413 0.543851
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Figure 6.9: Perceived Difficulty vs Performance. The horizontal axis shows the
calculated difficulty, vertical axis the perceived difficulty. We can clearly see a strong
linear relationship between the variables.

consider that a way to improve this experiment is to control exactly which difficulty

and when to present it to players.

Despite the fact that the calculations and the experiment should be modified

and improved to avoid abrupt changes of difficulty while playing, having a 0.75 of

correlation between the perceived difficulty and the calculated one is a positive result.

This means we can keep enhancing this method to achieve better results.

6.7.2 Performance and Difficulty

In figure 6.10 we can see how the data has a strong linear inverse tendency, with

a correlation coefficient of -0.69, despite the fact that is not as high as 0.7 to qualify

as strong correlation, it’s a high value that represents a close relationship between

the difficulty and performance calculated by the algorithm. This result shows that
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Figure 6.10: Performance vs Calculated Difficulty. The horizontal axis shows
the calculated difficulty, vertical axis the performance. We can see a linear inversely
proportional relationship between the variables.

difficulty and performance are inversely proportional in this case, the higher the

difficulty, the lower the performance, which in a way would be an expected result,

however it depends on the kind of player that is playing.

Since the conducted experiments did not involve any adaptation functionality,

we consider this a positive result, nonetheless for the ultimate goal of our research,

adapting the player experience according to the player’s skills, this correlation should

be the opposite.

6.8 Discussion

Graph grammars was a method originally designed to automatically create dun-

geons in dungeon crawlers, RPG games, etc. Due to the expressiveness and variety

of the results that can be obtained with graph grammars, we decided to use them to
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Figure 6.11: Graph Grammars. Results for all experiments.

create levels in 2D platformers, to evaluate their effectiveness and also to determine

if they could be used to create levels with a specific difficulty.

The use of graph grammars in 2D platfomers is a new way to procedurally gen-

erated levels with a high level of variety. In addition, the nature of graph grammars,

enabled us to come up with a novel way to calculate difficulty for each level that is

created automatically.

Additionally, the levels created by our algorithm consists of multiple paths. Which

encourage players to to explore and to enjoy a variety of possible maps using the same

core concept.

The results of our experiments demonstrate that it is possible to create levels

with a specific degree of difficulty, which was one of the hypotheses established in the

introduction.

Being able to create stages with a specific degree of difficulty, helps developers to

achieve a higher level of granularity and with this, it is possible to adapt the player

experience in a more specific and detailed way.

Our method effectively creates levels with a specific level of difficulty. We believe

that it is possible to improve the proposed model and also achieve better results by

testing with other parameters, however, the presented method is one way to do it and
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we can corroborate that one of the objectives of our research was completed.

These results also prove our final hypothesis: dungeon creation techniques can be

effectively used to create automatically generated levels in other genres. Of course

we would need to test with genres besides 2D platformers, but we have at least one

proof that this can be done.

In addition, we consider that Graph Grammars can be used to create 3D plat-

formers as well. Although we haven’t tested this approach for this research, using the

same graphs generated by the current proposed method and mapping that graph to

geometries in 3D, such as level areas and platformers located in the Z axis, it would

be possible to automatically create levels in 3D games, particularly for platformers.

As for the final objective of our research in this part, we know that graph grammars

can effectively help create levels automatically in platformrers, however, depending

on the type of game, the algorithm needs to be adapted for achieving good results. In

addition, we consider that for platform related games this would be a good method

but perhaps not so effective in other genres, further experiments need to be conducted

to prove it.

6.9 Chapter Conclusions

We successfully implemented a method that involves Graph Grammars to create

multipath levels in 2D platform games, which increases expressiveness and variety of

automatically created levels in procedural construction of levels.

This is only a first approach of a more general and bigger purpose method to

adapt the player experience through difficulty balance and performance.

Our experiment showed a 0.75 correlation coefficient between the difficulty calcu-

lated by our algorithm and the difficulty perceived by players. This strong correlation

demonstrates that the approach is heading to the right direction, however it’s nec-

essary to keep improving the current results to design a more robust method that

accurately defines difficulty for players.

Results also showed that performance and difficulty have a correlation of -0.69,

which is near to be considered a strong correlation and reinforces an expected out-

come: the level’s difficulty and player performance are inversely proportional. This

result in the general approach of experience adaptation should be the opposite at

some point where the performance of players increases along with the difficulty of the

levels they play.
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This method can be improved by changing the parameters of each formula and test

accordingly with players to find the best values and get positive results. In addition,

new experiments should be designed and conducted to evaluate the accuracy of this

method. Finally we will include these calculations in a more general method designed

to adapt player experience and compare results.
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Chapter 7

General Discussion

In previous sections, it was discussed how results are connected with the hy-

potheses proposed at the beginning of this document, the novelty of each method or

approach we designed and what could be improved from each method.

This research has as main motivation, to find new ways to improve the experience

for players. Specifically, to contribute to reduce the gap that exists between levels of

challenges and players’ skills.

Although three different types of approaches that seem to be unrelated were tested,

the author considers that there are important elements that connect them in a mean-

ingful way. Behavioral patterns, Brain Computer Interfaces and Difficulty Perception

are directly related to the player’s status. The way that the player physically reacts

can is part of the player behavior and contributes to determine how they feel at a

determined time. The brain activity can accurately show, for example, how focused

is a player in real time, which is part of the player behavior too. Finally, the percep-

tion of difficulty indirectly shows the player perception towards the game, indicating

how is the current behavior and how possibly could be used to improve the overall

experience.

These three ways of tackling the same problem have shown positive results despite

the differences in their nature. Separately, it has been possible to adapt the difficulty

or propose a way to adapt the difficulty of a game according to the player’s skills.

This was one of the objectives that were defined at the beginning of this research and

the three of them have demonstrated positive results towards finding novel solutions

to the main problem.

The author also considers that it would be interesting to combine some of these

approaches to propose new ways to automatically create content for the end user and

to evaluate their effectiveness for developers to create better games.
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The combination between EEG and rhythm-group theory was the most innovative

way to propose a solution for the problem. This method was not necessarily the

best but it was a new perspective on a problem that has been tackled by previous

researchers with similar tools.

Using Graph Grammars in a different genre also demonstrated to be effective

and with better parameters, could be a good tool to create endless content in other

genres. Perhaps this could be combined with the EEG component in order to make

more interesting experience.

Finally, behavioral patterns are probably one of the most promising proposals.

The author considers that combining different methods of classification in order to

understand the player’s emotions and perception, could lead to designed a tailored

experience for players. This method can also be used commercially by developers, in-

stead of measuring the pressure sensitivity, it is possible to measure the time between

pressing an releasing a button in order to get an accurate approximation of the force

exerted on the button of the controller.
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Chapter 8

Conclusions

This research was started to find new approaches and solutions to the problem

of the difficulty imbalance that exists in videogames in order to avoid a negative

experience for players and with this, provide alternatives for developers to offer a

adequate challenges in the games they create.

Different methods were designed, applied and tested in genres such as 2D plat-

formers and 2D shooting games. From chapter 6 with the creation of multipath levels

in 2D platform games; chapter 5 by using EEG and performance in 2D platformers;

to chapters 3 and 4, that explore a three step general approach to use behavioral pat-

terns to recognize how players experience 2D shooting games in real time and modify

the game in consequence.

Graph Grammars proved to be a suitable solution to automatically create levels

with multiple paths from start to end in 2D platformers. After conducting experi-

ments and analyzing the results, the analysis shows that there is a 0.75 correlation

coefficient between the perceived difficulty by players and the difficulty the designed

algorithm calculated. With this not only it was able to propose the new model to

design levels in real time but also a model with a specific difficulty that can be helpful

when using procedural content generation methods.

In addition, results from these experiments also corroborate that players’ perfor-

mance and the difficulty they face is inversely proportional with a correlation coeffi-

cient of -0.69. This is actually an expected results but in this research it was possible

to clearly show it after testing.

Rhythm-Group Theory, which has been successfully used in previous research to

create levels automatically in 2D platformers, in combination with attention levels

obtained in real time from a biosensor (Neurosky) by using EEG, demonstrated to be

a good approach to adapt the levels of challenges for players. Including the new EEG

component to adaptation approach worked to compensate the results obtained from
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calculated performance while playing and with this, add more variety to the levels

designed by the proposed algorithm.

The skills of players that participated in these experiments vary from people that

play games everyday to people that rarely play videogames, which shows that this

type of approach could successfully adapt content for experienced and inexperienced

players.

As a validation for the overall method and results, experiments without the EEG

component were conducted to compare the effectiveness of this new model, results

show that having the EEG component can improve the overall calculations.

For the second part of the research, the autho decided to delve in the field of

behavioral patterns and try to find ways to predict players’ emotions and perception

towards games in real time. With the goal of improving the player experience by using

behavioral patterns, this approach was divided in three steps that complemented each

other: (1) data collection, (2) classification methods and (3)difficulty adaptation.

The focus was to analyze the pressure exerted on a gamepad’s button, expecting

that depending on how players felt while playing, would somehow be reflected by the

way the press the button. For instance, when players are more excited while playing,

press the button harder, etc.

Experiments were designed to trigger the action of pressing a button as many

times as possible by playing a simple 2D shooting game. Players were required to fill

in a questionnaire about their experience after playing each levels.

From this data, it was shown that pressure sensitivity (exerted on the PS3 con-

troller) and difficulty were directly proportional, corroborating what was found in

previous research. In addition, results showed that players tended to press the but-

ton harder when they played more difficult levels.

One of the parameters measured in this experiment was dominance and it showed

a strong negative correlation with pressure. One can deduce that players pressed the

button harder when they felt less dominant, related as well with the difficulty they

were facing at that time.

Another clear result from this part of the data analysis was that fun and pressure

are directly correlated, the more fun players had, the harder they tended to press the

button.

Taking a look at the players’ background and their experience while playing, it

was found that players with more experience press the button softer than players with

less experience. Considering that more experienced players are used to a gamepad
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and have played 2D shooting games in the past, it’s a task that would be easier for

them than for players without this experience.

For the second part of the behavioral patterns approach, several Neural Networks

and Support Vector Machines were tested to find the best model that could predict

emotions from players by looking at the pressure they exerted on a button.

Results showed that Support Vector Machines can predict this type of data better

than Neural Networks. Support Vector Machines showed an average accuracy of with

70.69% and Neural Networks an average accuracy of 68.55%.

It was possible to improve previous research’s [32] results with the proposed mod-

els, for which they achieved 53.44% of accuracy to classify boredom, engagement and

fun. In this research’s case, these three parameters had a better accuracy, including

boredom with 83.64%.

In addition, the parameter with the best results was boredom, followed by frustra-

tion, fun, difficulty and arousal which were predicted with more than 70% of accuracy.

After completing the second step of the proposed new approach, the plan is to use

these results to propose a final method that can adapt the game depending on the

emotions and perceptions that players are having while playing.

The general idea is to use the models created in step 2, specifically Support Vector

Machines with the best parameters: boredom, frustration, fun and difficulty and use

them to modify the game in real time and offer a more adequate experience for players.

In this research,the author successfully designed and tested different approaches

and methods to find new solutions about the problem that exists with difficulty

imbalance in videogames. Combining new components (EEG), testing methods that

were successful in other genres (Graph Grammars), focusing on finding patterns to

detect how players behave or react towards the game (Pressure Sensitivity), etc, the

author proposed different ideas that can be used by game developers in the industry

or the academia to improve the overall experience they offer to players or simply to

act in consequence for specific purpose.

There are still ways to improve the methods presented in this thesis, there are

parameters to change or test, however, this first step towards making games more

enjoyable for a wider range of people can work as a cornerstone to design better

games for players.
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