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Abstract 

      Obstetricians use Cardiotocography (CTG) during labor to look for vital information affecting 
the health and safety of mother and fetus. However, CTG faces various challenges such as high 
noise, interpretation inconsistency, and the need for continuous expert presence. This study aims 
to provide different artificial intelligence approaches where each one acts as supportive guidance 
to help overcome the present challenges of CTG and predict fetal with potential complications. In 
the first part of the study, we denoised CTG signals and used an algorithm for extracting important 
features using Japan Society of Obstetricians and Gynecology (JSOG) guidelines and applied four 
machine learning methods: SVM, RF, DT, and ANN on extracted features to test the performance 
of the algorithm in detecting high-risk birth on large data gathered under clinical conditions. The 
process was tested on pH alone, then on Apgar 1 and 5 only, and finally on pH, Apgar scores 1 
and 5. The best result achieved was of Apgar 1 and 5 only using RF with an area under the curve 
(AUC) of 0.89. The second part discusses our multi-input convolutional neural network (CNN) 
model which bypasses the need for CTG guidelines and extracts features directly from CTG 
images and gestational age. The model predicts infants with potentially low Apgar scores and 
achieved an AUC of 0.958 when classifying infants with Apgar score 5 minutes < 7 and an AUC 
of 0.955 when Apgar score 1 or 5 minutes < 6. In the third part of the study, we used anomaly 
detection generative adversarial networks (ANOGAN) to analyze and rate normal and abnormal 
CTG images based on anomalies found in them. This study overcomes data imbalance, a major 
challenge in artificial intelligence, by training only on the majority class which is the patients with 
a pH of 7.1 or higher. Moreover, the original ANOGAN uses DCGAN architecture so we also 
implemented ANOGAN on WGAN and WGANGP architectures. The trained model is tested on 
a dataset that includes an identical number of normal and abnormal CTG where it generates each 
image in the test dataset and provides a score based on the similarity between real and generated 
images. The model is trained solely on negative class. We found that CTG images with pH < 7.1 
tend to have a higher anomaly score than CTG with pH >= 7.1. Based on the results of the 
aforementioned studies, we conclude that our approaches could support each other in guiding 
medical teams in mitigating risks they encounter during childbirth. 
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Chapter 1 

General Introduction 

 
1.1 Research Background 

The implementation of machine learning (ML) and neural network in the medical field sought an 
ever grown in the last decade. This interest emerges from the coinciding growth of artificial 
intelligence research and the need for better health care, lower costs, and higher efficiency. It is 
usually challenging to have professional practitioners and the challenge becomes more apparent if 
it is a complicated medical condition or a remote place in the world. There are many ways in which 
machine learning and neural network can support medical staff such as data collection, 
recordkeeping, medical imaging, diagnoses, outbreak predictions, and more which mitigate some 
difficulties facing specialists and help them in making informed decisions, focusing on more 
critical conditions and expanding their availability for more patients. Medical researchers utilized 
machine learning in different ways to benefit their needs. For example, the use of deep learning in 
medical imaging to identify cancerous tumors in early-stage to raise the probabilities of finding a 
treatment [1] or as a decision-making tool to support the experts in assessing kidney allograft 
biopsies transplant to diagnose allograft rejection [2]. 

Cardiotocography (CTG) is the process of reading fetal heart rate and uterine contraction 
in the third trimester of pregnancy and during birth. It is an important assessment tool used by 
obstetricians worldwide to assess the general health condition of the fetus [3]. CTG consists of 
fetal heart rate (FHR) and uterine contractions (UC). Interpreting both FHR and UC is a 
challenging task since it relies on the visual assessment of heartbeats and requires the continuous 
presence of experts. This can be difficult especially in hospitals with many patients and few 
obstetricians. Continuous monitoring of fetal heart rate is essential to detect the potential of fetal 
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hypoxia and other serious health risk issues [4]. It is difficult to make a consensus interpretation 
when interpreting CTG due to the inconsistency between obstetricians’ judgment [5]. Moreover, 
it is not uncommon for an obstetrician to have a different opinion on the same CTG at separate 
time periods [6].  CTG signal also suffers from high noise due to the nature of the environment it 
is used in. The transducers attached to the mother monitor FHR and UC signals and the continuous 
movement of the mother during labor cause artifacts to CTG signals and false readings. FHR 
abnormalities are significantly influenced by the occurrence of hypoxic-ischemic encephalopathy 
(HIE) which involves an unusual change in the oxygen supplied to the fetal through the umbilical 
cord and the well-being of the placenta and uterus [7]. Abnormalities are found when a fetal suffers 
from oxygen deficiency which gives low arterial cord hydronium ions concentration (pH) a lower 
reading. This suggests the urgency of medical team intervention.  

Another major indicator of fetal abnormalities is the Apgar score. After the first minute of 
delivery, the medical team checks how the fetal tolerated the birth process and rates it based on 
the Apgar rating system, which rates fetal skin color, pulse rate, reflex, muscle tone, and respiratory 
effort. Each is rated from 0 to 2 where a total of ≥ 7 out of 10 is the average. This procedure is 
repeated after 5 minutes, hence they are named Apgar score 1 and 5. The use of FHR monitoring 
leads to a substantial decrease in the risk of early neonatal mortality and morbidity which cause 
infant mortality [8]. However, even though it’s been used for a long time, the potential of 
continuous FHR monitoring is yet to be completely explored [9]. Artificial intelligence showed 
significant advancement in the medical domain and many studies applied it to computer-based 
intrapartum fetal monitoring and CTG analysis. Georgieva et al., a review of a biannual workshop 
on the latest advancement of signal processing and monitoring in labor, discussed multiple 
approaches and techniques done in CTG and how AI, especially machine learning (ML) and deep 
learning (DL), can further improve this field and propose potential solutions to its problems [10]. 

1.2 Previous Studies 

By looking through research projects implementing machine learning and deep learning in CTG, 
we can outline the general ideas of the studies into the following: 

Some studies build or use an algorithm based on one of CTG guidelines to extract important 
features and input these features into different ML models to classify abnormal from normal births 
[11,12]. Obstetricians rely on guidelines to interpret FHR and UC patterns and based on the 
meaning of the CTG’s patterns they make decisions. These researches depend on the CTG 
guidelines to extract important features and use ML to classify risks to newborns. However, the 



 3 

previous experiments still use guidelines built by humans and there are several guidelines to 
implement and the guidelines have inconsistencies between them [5,13]. Other researchers utilized 
deep learning approaches to extract features from CTG directly and interpret the newborn 
condition based on the features. Some studies applied tweaks to some of the popular neural 
network architectures and some built new models specifically for the researched task [14,15,16]. 

Additionally, we noticed the variety in datasets is quite limited. Many types of research 
projects were done on the CTU-UHB Intrapartum Cardiotocography dataset [17]. The dataset 
contains only 552 cardiotocography (CTG) recordings with a gestational age of 37 weeks or more 
and suffers from data imbalance. Some studies worked on improving the quality of the studied 
data. For example, I. Linardos used Generative Adversarial Networks (GAN) to generate non-
anomalous data [18] and R. D. I. Puspitasari et al. used Time Series GAN to generate more data in 
the CTU-UHB CTG database which, according to the paper, could solve data imbalance and 
improve classification when using convolutional neural networks [19]. 

1.3 Research Objective 

By reviewing the outcomes of previous studies that focused on utilizing machine and deep learning 
in classifying high-risk birth we think this problem could be solved through the use of multiple 
models where each model confirms the outcome of the other. Our goal is to contribute different 
artificial intelligence approaches in providing supportive guidance to help overcome the present 
challenges of CTG and predict fetal with potential complications. This was also the suggestion and 
conclusion of some of the recent studies [14, 20]. Relying on the judgment of only one model may 
not give a complete perception of the occurring issue. For instance, establishing an opinion based 
only on the Apgar score may be misleading [21]. This is why we think each study we did so far 
can be used to some extent to help a medical team to further confirm the health and safety of the 
fetus. 

We attempt to achieve our goal through several objectives. First, is an improved CTG 
denoising process that removes high noise without affecting the overall form of the original signal. 
Our dataset was collected under a clinical trial. The signals suffer from relatively high noise. This 
is why we need a reliable denoising process that deals with high noise. Second, we wanted to study 
if machine learning models can learn features extracted from CTG guidelines and make a 
prediction about whether the fetus is at risk or not. We built an algorithm to extract important 
features from CTG using Japan Society of Obstetricians and Gynecology (JSOG) guidelines for 
CTG interpretation and use machine learning methods to evaluate the performance of the algorithm 
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in detecting high-risk birth on large data obtained under clinical conditions. The classification was 
tested using Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and 
Artificial Neural Network (ANN). The process was tested on three target labels: 1- pH, 2- Apgar 
score 1 and 5, and 3- Both pH and Apgar score. Using Area Under Curve (AUC) to evaluate the 
performance, the highest AUC achieved was 0.89. The target label was Apgar 1 and 5 only using 
RF. Obstetricians use CTG guidelines to detect normal and abnormal patterns such as the 
International Federation of Gynecology and Obstetrics (FIGO) and the National Institute of Child 
Health and Human Development (NICHD) and several studies applied machine learning methods 
to these guidelines [11,22]. However, to the best of our knowledge, we found no study that applied 
machine learning using JSOG guidelines 5-level FHR patterns classification, which is the official 
practiced guidelines in Japan. 

 
Third, contrary to the latter approach, we wanted to extract CTG features without 

depending on CTG guidelines. We built a deep neural network model to learn features directly 
from CTG images and classify fetal with the risk of a low Apgar score, bypassing the need for 
CTG guidelines. We used Efficient-Net with transfer learning on ‘image-net’ dataset weights 
concatenated with a simple neural network made solely for training on gestational age. 
The CNN model performance scored an Area Under Curve (AUC) of 0.958 when classifying 
infants with Apgar score 5 minutes < 7 and an AUC of 0.955 if Apgar score 1 or 5 minutes < 6 
without an algorithm for feature extraction and without using data augmentation or synthesis. We 
noticed improvement in AUC performance when training on CTG images with longer signal 
lengths. 

Lastly, we implemented anomaly detection using generative adversarial networks 
(ANOGAN) [23] to analyze anomalies in abnormal CTG images which may cause complications 
to a fetus and result in a low pH test score of lower than 7.1. The model is trained on a dataset 
containing CTG images of patients with non-acidosis pH, which is pH>=7.1, and tested on a 
dataset where 50% of its records are pH<7.1 and 50% are pH>=7.1. Unlike the previous 
experiments, we don’t modify the dataset size for data imbalance as we use all of the possible 
records which are equal to 13723 after the data processing step. Because training contains only 
negative classes, training shouldn’t struggle with class imbalance, which is a major challenge in 
studying CTG using artificial intelligence. O’Sullivan ME et al. studied the challenges artificial 
intelligence faces when dealing with CTG. In their discussion section, they stated “class imbalance 
is a major concern, and perhaps an anomaly detection approach may be best suited” [24].  
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In the original ANOGAN paper, the model was built upon DCGAN [25] architecture. 
However, in this study, we also implemented ANOGAN on WGAN [26] and WGANGP [27] 
architectures. Both WGAN and WGAN-GP have shown success in solving some of DCGAN’s 
issues such as the occurrence of exploding gradient, vanishing gradient, or mode collapse. In 
ANOGAN, a trained discriminator is treated as a feature extractor, not as a classifier. The 
discriminator learns the feature representation of the training set and maps new images to the latent 
space and finds an image with similar features. Based on these features the model generates CTG 
images from the test set and both the generated images and the real images are then compared with 
each other using the anomaly score algorithm [23]. The anomaly score is given to real images and 
the value is an indication of the difference between the real and the generated CTG image. A high 
anomaly score suggests a high difference between the two images. We found no study that applied 
GAN or ANOGAN to generate CTG images or detect abnormalities in FHR patterns, especially 
on big data sets and without data augmentation. We implemented ANOGAN using DCGAN, 
WGAN, and WGANGP architectures, then compared their performance in generating images 
using Fréchet Inception Distance (FID) [28], Probability Density Function (PDF) from probability 
theory, and Precision and Recall (PR). 

1.4 Thesis Organization 

In this thesis, different artificial intelligence approaches were applied to study classification using 
CTG where each approach touches upon a challenge in CTG to provide the medical team with 
prognosis tools to help identify infants with potential risk. Chapter 2 focuses on two parts, first: a 
description of the dataset used in this work with the processes applied to it and the denoising 
process needed to prepare the dataset for the study. Second, an algorithm for extracting important 
CTG features using Japan Society of Obstetricians and Gynecology Guidelines (JSOG) 
guidelines/rules and applied multiple machine learning methods to classify fetus hypoxia. 
Classification is tested using three labels: pH, Apgar score 1 and Apgar score 5. Chapter 3 
introduces our multi-input convolutional neural networks (CNN) to predict neonatal with possibly 
low Apgar score. The CNN model accepts denoised cardiotocography (CTG) images and 
gestational age and uses binary classification to detect if a fetus may have a low Apgar score before 
birth. Chapter 4 examines the capability of Anomaly Detection Generative Adversarial Networks 
(ANOGAN) to analyze the relationship between CTG images with low and normal pH by 
generating fake CTG images and comparing them with real images. The quality of the generated 
images is evaluated using three different methods for evaluating GAN’s generated images. Chapter 
5 is a summary of the thesis. 
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Chapter 2 

Application of Machine Learning 
Techniques to Classify Fetal Hypoxia Using 
Japan Society of Obstetricians and 
Gynecology Guidelines 

 

2.1 Introduction 

FHR interpretation relies on a set of rules or guidelines to understand them. These guidelines are 
not universal. There are multiple attempts by experts in the field to standardize the management 
of FHR patterns [29]. The International Federation of Gynecology and Obstetrics (FIGO) 
published the only international consensus so far. Still, health institutes usually use guidelines 
developed regionally or locally but it is not uncommon to find different health institutes in one 
country using different guidelines. For instance, in the United States, CTG is often interpreted 
based on the American College of Obstetrics and Gynecology (ACOG) or National Institute of 
Child Health and Human Development (NICHD) and in the United Kingdom usually interpreted 
using the institute for Health and Care Excellence (NICE) guidelines. In general, all the guidelines 
agree and disagree with each other in some aspects and have shown to have different accuracy 
[30].  
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In Japan, the regularly used guidelines are made by the Japan Society of Obstetricians and 
Gynecology (JSOG). Unlike other guidelines, JSOG uses a 5-level classification of CTG patterns 
where 1 suggests a normal pattern and 5 as the highest risk variant pattern as shown in Table 2. 
JSOG guidelines proved that it can predict early neonatal outcomes that usually result from a low 
Apgar score, and low pH, thus it is medically acceptable [31]. In this study, we built an algorithm 
that follows JSOG guidelines to detect important CTG features and used multiple ML methods to 
classify high-risk birth.  

2.2 Related works 

This work shares similarity with [11], [12], and [22]. The focus of [11] was comparing the 
performance of the most known ML techniques applied to FHR whereas Hasan et al. used FIGO 
guidelines as bases for their extracted features [12] and Esteban-Escaño J et al. used NICHD 
guidelines [22]. So far, to the best of our knowledge, no study applied machine learning methods 
using JSOG 5-level FHR patterns classification on a realistic big dataset.  

2.3 Study Objective 

The objective of this study is to apply machine learning methods to test the performance of our 
locally built algorithm using JSOG guidelines’ 5-level pattern judgment to find high-risk fetuses 
through the use of Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT) and 
Artificial Neural Network (ANN). To achieve this objective, the algorithm must extract important 
features from each CTG record in the dataset. Those features are extracted by using JSOG 
guidelines, which assign each fetal with a level. Level 1 is the lowest level which indicates a 
normal pattern and level 5 is the highest level and indicates a severe variant pattern. 

2.4 Method 

The work can be summarized into three main steps: 1- Data processing which includes removing 
noises from both FHR and UC, dropping records with short or bad signals, and removing 
unnecessary or empty columns. 2-Creating the algorithm for extracting essential features and 
rating them with a level based on JSOG guidelines. 3-Apply SVM, RF, DT, and ANN on all 
records to measure the performance using the area under the curve of receiver operating 
characteristics (AUC- ROC) curve. 
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2.5 Data Set and Processing 

2.5.1   Description of the Collected Data 

The dataset used in this experiment is a restricted internally available 38,073 CTG records from 
2012 to 2017 gathered from several hospitals (Table 1). In addition to FHR and UC data, the 
dataset metadata includes the delivery date, time and type, maternal and gestational age, fertility 
treatments, fetal weight and gender, pH, and Apgar score 1 and 5. All deliveries are singleton, 
extracted at the second stage of labor and nearly all are low-risk pregnancies.  

 

Table 1: The institutes that provided the dataset 
Name of Institute   Number of records 

Fukuoka University Hospital 2193 

Kyushu University Hospital 3539 

Izuchi Hospital  4929 

Fukuda Hospital 21,138 

Kumamoto University Hospital 1,231 

Total 38,073 

 

2.5.2   Denoising Process 

CTG records are prone to noise and signal drop. This is common to occur because the transducers 
attached to the mother’s abdomen may not be well fastened or because of the physical activities of 
both the mother and the fetus, which affect the stability of the readings. Our dataset’s CTG 
recordings were collected under clinical conditions and some records include excessive noise, long 
signal drop, and short signal recording. 

The process of noise removal was inspired by Zhao, Zhidong et al. [15]. However, the 
noise in the dataset of this work suffers from high noise, so some tweaks were made to the [15] 
approach. If any ≥ 15 seconds in FHR is filled with 0s, then it is dropped. Any other 0s are removed 
(changed to null). Any FHR that≥ 200 bpm or ≤ 50 bpm is removed. If any point within 15 seconds 
is > |25| bpm than the mean bpm of that 15 seconds, this point is removed. Finally, linear 
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interpolation is applied to all removed values and 0s. UC noises were reduced using a moving 
average window of 60. An example of the CTG denoising process can be seen in Figure 1. Also, 
the time length of each record varies as some are more than 3 hours and some others are less than 
30 minutes. We included only the last 60 minutes before birth of every CTG. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Results of removing noise from FHR & UC where first image 
represents the original signal and the second image represents the 

denoised signal. 
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2.5.3   Feature Extraction 

Following JSOG guidelines definitions, the extracted features from CTG are baseline, baseline 
variability, accelerations, early decelerations, mild/severe variable decelerations, mild/severe late 
decelerations, and mild/severe prolonged decelerations. The baseline is defined as follows: first, 
rounding FHR in every quarter second within 10 minutes period to the nearest 5 bpm, and then, 
the mode (most frequent number) of that 10 minutes is taken and set as the baseline value. Baseline 
variability is counted by calculating the difference in FHR peaks per minute. Baseline variability 
is called “absent” if the difference is 0 bpm, “minimal” if less than 5, “moderate” if between 5 and 
25, and “marked” if more than 25. 

Regarding the definitions of accelerations and decelerations, in general, acceleration refers 
to when FHR increases rapidly, and deceleration refers to when FHR decreases rapidly or slowly. 
If FHR is 15 bpm or more above the baseline for 15-120 seconds, this is counted as acceleration. 
Variable deceleration is classified as “mild” when FHR is 15 bpm or more below the baseline for 
15-120 seconds. It is classified as “severe” when the lowest point is less than 70 bpm and the 
duration is 30 seconds or more, or the lowest point is within 70-80 bpm and the duration is 60 
seconds or more. Early deceleration happens if FHR, which decreases gradually for 30 seconds or 
more, coincides with the occurrence of the UC where both the FHR and the UC start and end at 
the same time. Late deceleration is classified as “mild” when the decrease in FHR continues 
gradually for more than 30 seconds, begins near the highest point of UC, and ends after UC ends, 
and the late deceleration becomes “severe” when FHR’s lowest point is more than 15 bpm from 
the baseline. Prolonged deceleration is classified as “mild” when FHR is more than 15 bpm below 
the baseline for 2-10 minutes, and the prolonged deceleration becomes “severe” when FHR’s 
lowest point is less than 80 bpm. Within a window of 10 minutes, when accelerations or any type 
of decelerations occur, they are counted and assigned to their respective column. 

In JSOG guidelines, the extracted features are rated with a corresponding level from the 5-
level FHR patterns classification, also called the judgment table (Table 2), which indicates the 
health risk condition of the FHR. Instead of using the judgment table, we apply machine learning 
methods to our collected dataset for more accurate prediction results. 
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Table 2:	JSOG five-tier fetal heart rate classification 

 

 

 

 

For better data consistency, the time period chosen for the study is 30 minutes before 20 
minutes of giving birth. The last 20 minutes are more prone to artifacts due to increased mother 
movement so they are excluded for better signal quality. The algorithm is applied to every 10 
minutes of the chosen 30 minutes wherein every 10 minutes, features were extracted and judged 
independently resulting in 42 features; 14 features for every 10 minutes. Fetal weight and 
gestational age which are provided by the dataset are also included. The final form of extracted 
features for each record is shown in Table 3 and Figure 2 shows a summary of all the above-
mentioned processes. 

Table 3: Each row in the dataset should have the below features for 
every 10 minutes. Since the size of each CTG is limited to 30 minutes, 
the total features equal (14∗3) +2= 44 

Feature name Description 
Gestational age At the time of delivery 
Fetal Weight At the time of delivery 

Variability 

Absent No. per 10 min 
Minimal No. per 10 min 
Moderate No. per 10 min 
Marked No. per 10 min 

Baseline Of 10 min 
Acceleration No. per 10 min 
Early Deceleration No. per 10 min 
Mild Variable Deceleration No. per 10 min 
Severe Variable Deceleration No. per 10 min 
Mild Late Deceleration No. per 10 min 
Severe Late Deceleration No. per 10 min 
Mild Prolonged Deceleration No. per 10 min 
Severe Prolonged Deceleration No. per 10 min 
Judgment 1-5 rating for features 

FHR Pattern Classification Levels 
FHR pattern levels & Classification 
Level 1 Normal pattern 
Level 2 Benign variant pattern 
Level 3 Mild variant pattern 
Level 4 Moderate variant pattern 
Level 5 Severe variant pattern 
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Minutes Absent Minimal Moderate Marked Baseline Acceleration Early 
Deceleration

Mild Variable 
Deceleration

Severe 
Variable 
Deceleration

Mild Late 
Deceleration

Severe Late 
Deceleration

Mild 
Prolonged 
Deceleration

Severe 
Prolonged 
Deceleration

Judgment

20 0 0 5 5 140 2 0 0 0 0 0 0 0 1

Level 1 Level 2 Level 3 Level 4 Level 5

Normal pattern Benign variant 
pattern

Mild variant 
pattern

Moderate variant 
pattern

Severe variant pattern

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minutes Absent Minimal Moderate Marked Baseline Acceleration Early 
Deceleration

Mild Variable 
Deceleration

Severe Variable 
Deceleration

Mild Late 
Deceleration

Severe Late 
Deceleration

Mild Prolonged 
Deceleration

Severe Prolonged 
Deceleration Judgment

10 0 0 6 4 145 0 0 1 0 0 0 0 0 2
20 0 0 5 5 140 2 0 0 0 0 0 0 0 1
30 0 0 8 2 140 0 0 0 0 0 0 0 0 1
40 0 0 7 3 140 0 0 0 0 0 0 0 0 1
50 0 0 6 4 135 0 0 2 0 0 0 0 0 2
60 0 0 2 8 130 1 0 3 0 0 0 0 0 3

Minutes Absent Minimal Moderate Marked Baseline Acceleration Early 
Deceleration

Mild Variable 
Deceleration

Severe Variable 
Deceleration

Mild Late 
Deceleration

Severe Late 
Deceleration

Mild Prolonged 
Deceleration

Severe Prolonged 
Deceleration Judgment

20 0 0 5 5 140 2 0 0 0 0 0 0 0 1
30 0 0 8 2 140 0 0 0 0 0 0 0 0 1
40 0 0 7 3 140 0 0 0 0 0 0 0 0 1

30 minutes before 20 minutes of giving birth. 

features from metadata

Gestational age Birthweight 

+

A) The above 10 minutes CTG signal has two accelerations. They are added to the table and 
judged as Level 1: Normal pattern based on JSOG guidelines.  

B) Step A is applied to the highlighted rows where each row is 10 minutes of the chosen 30 
minutes, then gestational age and birthweight of that record are added along the extracted 
features 
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2.5.4   Applying machine learning methods 
Four ML methods were applied followed by their chosen hyperparameters: Support Vector 
Machine (SVM) (kernel = “linear”, C = 0.01, class weight = “balanced”), Random Forest (RF) (n-
estimators = 100, max depth = 40), Decision Tree (DT) (max depth = 6, criterion = “gini”, splitter 
= “best”), and Artificial Neural Network (ANN) (activation function = “relu”, layers size = (45,45), 
max iteration = 1000, optimization = “adam”). 

All of the aforementioned are applied using the Scikit-learn library for Python and the 
choices of the hyperparameter were based on the use of GridSearchCV in Scikit-learn which is a 
process of hyperparameter tuning for finding the optimal values for the model. Features in Table 
3 are used as input data and pH (< 7.1), Apgar score 1 and 5 (<6) as binary target labels where 1 
denotes high-risk birth and 0 as low-risk birth. 

Minutes Absent Minimal Moderate Marked Baseline Acceleration
Early 
Deceleration

Mild Variable 
Deceleration

Severe Variable 
Deceleration

Mild Late 
Deceleration

Severe Late 
Deceleration

Mild Prolonged 
Deceleration

Severe Prolonged 
Deceleration Judgment

20 0 0 5 5 140 2 0 0 0 0 0 0 0 1
30 0 0 8 2 140 0 0 0 0 0 0 0 0 1
40 0 0 7 3 140 0 0 0 0 0 0 0 0 1

Repeat same steps for all records in the dataset  

Target Label No. positive samples No. negative samples

pH < 7.1
299 3239

Apagr1| Apgar5 < 6
534 2985

pH | Apgar1| Apgar5 775 2744

Three features tested on three target label  pH, Apgar 
score 1 and 5

• Original dataset has 38,073 records

• Only 3519 records were used for data balance.

• Three tests:

1. Extracted features.

2.   Extracted features and 
Gestational age.
3.   Extracted features, Gestational 
age and Birthweight.

Figure 2: A summary of the process for extracting features from CTG signals and assigning 
target labels. 

C) Step B is applied to the rest of records. The resulting dataset is prepared for three 
tests on three target labels. 
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The classification accuracy was quantified and compared using ROC-AUC. All three 
processes were tested multiple times using 5-fold cross-validation. To solve class imbalance, 
random undersampling (for negatives) and SMOTE oversampling (for positives) were applied 
during training, which both are well-known methods used for handling data imbalance. 
Additionally, for better class balance, 3519 records in total were used in the experiment, making 
sure most of the positive classes in the original 38,073 records are included. This changes the ratio 

of positive to negative samples to ∼11% for pH, ∼18% for Apgar score 1 or 5, and ∼28% for both 
(see Table 4). 

 

Table 4: The number of positive and negative samples in training and 
testing data for the ML experiment. Positive classes refer to classes 
that satisfy the conditions of a label whereas negative classes refer to 
the ones that don’t 

 

 

2.6   Experimental results 
Both the processes of denoising CTG signals and the algorithm accuracy to predict the classic 
CTG features such as baseline, baseline variability, acceleration, and decelerations have been 
tested several times under the supervision of expert obstetricians which helped produce satisfying 
results. ML classification performance outcomes for 5-fold cross-validation are summarized in 
Table 5,6, and 7. 

As can be seen, adding gestational age to the extracted features significantly improves the 
performance when the Apgar score is the target label. A slight improvement also occurs when 
birthweight is added as a feature. Almost none of the aforementioned happens when pH (Table 5) 
is the target label. It is also clear that AUC in Table 7 is less than the AUC in Table 6 because of 
the addition of pH as a target label. In all cases, using the Apgar score instead of pH produced 
much better classification performance. This could be related to the findings of [31] where they 
found a significant difference between Apgar score 1 in high-risk birth cases using JSOG 
guidelines classification compared to low-risk birth cases. On the other hand, Apgar score 1 did 

Label No. positive samples No. negative samples 
pH 299 3239 
Apagr1 | Apgar5 534 2985 
pH | Apgar1|Apgar5 775 2744 
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not differ significantly between high and low-risk birth cases in the subjective classification 
methods (three-level risk classification). Another reason is the overall nature of pH analysis since 
pH, when obtained by obstetricians, does not discriminate respiratory acidemia from metabolic 
acidemia and the pH sampling fails with a ratio between 11% to 20% [32]. 

 

Table 5: ML using three feature sets on pH only as target label. In each test, extra features are 
being added to experiment with the performance variation 

Features method 5-fold CV 
AUC 

Extracted 
features only 
(#features = 
44)  

SVM  .64 ± .06 
RF .62 ±. 05 
DT .57 ± .05 
ANN .63 ± .04 

Extracted 
feature + 
Gestational age 

SVM  .65 ± .02 
RF .64 ± .03 
DT .56 ± .04 
ANN .63 ± .03 

Extracted 
feature + 
Gestational age 
+ birthweight 

SVM  .65 ± .05 
RF .68 ± .02 
DT .61 ± .02 
ANN .60 ± .03 

 
 

Table 6: ML using three feature sets on both Apgar score 1 and 5 only as target labels. In each 
test, extra features are being added 

Features method 5-fold CV 
AUC 

Extracted 
features only 
(#features = 
44)  

SVM  .71 ± .03 
RF .73 ± .03 
DT .68 ± .01 
ANN .72 ± .02 

Extracted 
feature + 
Gestational age 

SVM  .88 ± .03 
RF .89 ± .03 
DT .82 ± .03 
ANN .88 ± .03 

Extracted 
feature + 
Gestational age 
+ birthweight 

SVM  .89 ± .02 
RF .91 ± .02 
DT .82 ± .02 
ANN .88 ± .02 
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Table 7: ML using three feature sets on pH, Apgar score 1 and 5 as target labels. In each test, 
extra features are being added 

Features method 5-fold CV 
AUC 

Extracted 
features only 
(#features = 
44)  

SVM  .65 ± .02 
RF .67 ± .04 
DT .64 ± .02 
ANN .64 ± .02 

Extracted 
feature + 
Gestational age 

SVM  .78 ± .01 
RF .80 ± .01 
DT .76 ± .01 
ANN .79 ± .02 

Extracted 
feature + 
Gestational age 
+ birthweight 

SVM  .78 ± .01 
RF .82 ± .01 
DT .76 ± .02 
ANN .77 ± .01 

 

 

2.7   Discussion and Conclusion 
So far, we successfully improved the accuracies for detecting high-risk births by introducing 
various methods such as denoising, constructing effective features, and choosing appropriate 
labels. Our method achieves 0.91 in prediction accuracy (see in Table 6, the row of RF with 
Extracted features + Gestational age + birthweight). However, birthweight is considered an 
unreliable feature in this study since it can only be accurately obtained after birth. Birthweight was 
used for the purpose of testing how much it would affect classification performance. The extracted 
features + Gestational age can be obtained before birth which is why they are usable features, thus 
AUC of 0.89 is the best achieved AUC in this experiment. We think there is still room to enhance 
it as described below. 

While the dataset size provided flexible testing, the actual CTG recordings had plenty of 
noise to the point that may affect the signal quality and the ability to extract features from it. One 
of the causes that limit the performances of the extracted features is related to the length enforced 
on the signals. Some signals, when checked manually, were found to have significant information 
that could cause high-risk birth. However, the critical information time in the signal is not always 
consistent. For example, some serious decelerations were found within > 90 minutes before birth 
in some signals and < 30 minutes in some others. Forcing the length to 30 minutes before 20 
minutes of giving birth may miss some serious information. 
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Still, using CTG guidelines in ML experiments may not be the best method to approach 
this problem. We are making the machine form its decision based on guidelines which their 
accuracy is disputed [30]. Rather than trying to find which guideline is the most accurate, we can 
input the CTG images directly to the CNN model for the classification using minimum features or 
without the need for interpretation. CNN takes in images and detects (learn) important features 
that could or couldn’t be perceived by human vision.  
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Chapter 3  
 

Predicting High-Risk Birth from Real 
Large-Scale Cardiotocographic Data Using 
Multi-Input Convolutional Neural 
Networks 
 
3.1 Introduction 

Neonatal death, hypoxic-ischemic encephalopathy (HIE), and respiratory distress are a few 
examples of risks fetuses may face the moment they are born. Such risks can be mitigated or 
prevented with knowledge about the fetus’s condition inside the womb alongside speed and 
intensive care by the medical team. Obstetricians perform different tests to assess the safety of 
mother and fetus during birth such as umbilical-artery blood pH and Apgar score.  

Apgar score is a rapid standardized assessment test that is performed on babies after one 
minute of birth to assess their health. The test measures five categories: appearance, pulse, grimace, 
activity, and respiratory. An Apgar score of 10 points means the newborn scored 2 in all categories 
in the Apgar scale, which is the highest. The same test procedures are reapplied after 5 minutes of 
birth resulting in the Apgar score 1 minute and Apgar score 5 minutes. The test may again be 
repeated, if needed, after 10, 15, or minutes of birth. Generally, an Apgar score of 7 or more is the 
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average and it means the newborn is healthy. A low Apgar score can be an indicator of the risk of 
fetal compromise. For example, an Apgar score 1 or 5 minutes of value between 0 to 6 is associated 
with a higher risk of cerebral palsy and epilepsy. The lower the score is, the higher the possibility 
can be [33]. This doesn’t necessarily mean the infant will surely develop cerebral palsy, however, 
based on population studies, Apgar score after 5 and 10 minutes that are lower than 5 signifies a 
higher risk of cerebral palsy [34]. Also, an Apgar score 5 of less than 7 has shown an association 
with the occurrence of neurologic disability and low cognitive functions in early adulthood [35], 
increased the risk of neonatal respiratory distress and hypoxic-ischemic encephalopathy (HIE) 
[36], and increased the risk of Autistic Disorder [37]. Casey BM et al. and Li F et al. have shown 
that a very low Apgar score 5 (0-3) is correlated with neonatal mortality and the risk of neonatal 
death in term infants with (0 - 3) Apgar score 5 was eight times the risk in term infants with 
umbilical-artery blood pH values of 7.0 or less [38,39]. For identifying the risk of neonatal 
mortality, “Apgar score is a valid predictor of neonatal mortality. In fact, the Apgar score better 
predicted outcome than umbilical-artery pH of 7.0 or less.” [40]. There is no considerable 
correlation between Apgar score at 1 and 5 minutes and umbilical cord pH in low-risk pregnancies, 
however, the correlation is more apparent between them in high-risk pregnancies [41]. 

Cardiotocography (CTG) is a monitoring tool used to look for vital information affecting 
the health and safety of mother and fetus during labor. CTG signals are interpreted by obstetricians 
using guidelines and there are multiple guidelines such as FIGO, ACOG, JSOG, etc. that tried to 
interpret the meaning of CTG signals and their consequence on mother and fetus. Nevertheless, 
these guidelines have disparity among them [13] and even obstetricians’ opinions vary in 
classifying CTG [5]. According to the Each Baby Count report of 2019, more than 70% of 
stillbirths, neonatal death, and brain injuries cases would have had a different outcome with 
different care, and out of 420 delivery cases, 236 were linked to CTG false interpretation [42]. 
There has been a debate if visual-aided analysis is better than computer analysis or vice versa and 
some studies tried to compare them on a big scale [43,44]. Both studies saw no significant 
advantage of using one over the other. Berglund, S et al. showed that the care for two-thirds of 
newborns with a low Apgar score was substandard due to misinterpretation of cardiotocography 
(CTG) or poor response to abnormal CTG at the right time [45]. Abnormal CTG is usually related 
to fetal distress. There is an association between a low Apgar score and pathological CTG [46] and 
almost a fifth of pathological CTG may have a low Apgar score 5 [47]. 

Convolutional Neural Network (CNN) is an artificial intelligence deep neural network 
technique mostly applied to the image recognition field. CNN achieved the state of the art to 
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predict objects, faces, tumors, and more. CNN takes in images and detects (learns) important 
features that could or couldn’t be perceived by human vision. Based on the aforementioned, we 
propose a CNN model that takes in CTG images and other major characteristics of fetuses available 
pre-labor to predict birth with low Apgar. If it is possible to predict a low Apgar score using 
minimum features or without the need to interpret CTG or have background knowledge about it, 
this would assist the medical team and help them prepare for the labor outcome in a quick and 
timely manner.	

 

3.2 Related Works 

Podda, M. et al. applied neural networks to predict the survival of preterm infants and achieved an 
AUC of 0.91. The study was applied to infants with <30 gestational weeks and needed features 
that were available within 5 minutes after birth [48]. In our previous work, we built an algorithm 
to extract some of the main features obstetricians look for in CTG such as accelerations, 
decelerations, baseline, etc. Using the algorithm, we trained a random forest ML model to classify 
Apgar score 1 or 5 of <6 and achieved an AUC of 0.89. Zhao, Zhidong et al. applied CNN to CTG 
to predict cord acidemia at birth, and Petrozziello, Alessio et al. are the first to do so [14,15]. One 
of their interesting conclusions is their model will not perform well if cord acidemia is absent and 
CTG may better be diagnosed with different models estimating different risks which might cause 
fetal compromise [15]. 

This work’s intentions are to provide the medical team with a prognosis tool to predict 
infants with a high risk of a low Apgar score so they can be ready to take the required medical 
procedures before birth. We use a large dataset that is gathered under clinical conditions. So far, 
to the best of our knowledge, no study used deep learning methods to analyze Apgar score 
classification. No study, we are aware of, applied Convolutional Neural Network on CTG to 
classify fetuses with a low Apgar score. 

3.3 Study Objective 

This study aims to build a deep learning convolutional neural network model that acts as a 
prognosis tool to predict neonatal with possibly low Apgar score, which is one of the criteria that 
assess possible risks on neonatal, so they can be ready to take the required medical procedures. 
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This is done without using algorithms to extract CTG features such as baseline, accelerations, 
decelerations, etc. 

The CNN model architecture used in this work is a multi-input model of two blocks, a 
block that accepts denoised CTG images and a block that accepts gestational age. The two blocks’ 
outputs are concatenated to be trained together to predict a low Apgar score as binary classification. 
Figure 3 shows a detailed visualization of the built model and Table 9 describes the applied 
parameters. This work, however, doesn’t claim to predict the implication, the meaning, or the 
condition of infants that causes Apgar score to become low. It gives the medical team a heads up 
or foresight of whether the newborn Apgar score will be high or low and the medical team prepares 
the necessary procedures for such concurrence. This is work intended to rely on real data only. 
The dataset was not augmented nor synthesized. The chosen metric to measure the model 
performance was the area under the curve of receiver operating characteristics (AUC-ROC) 
because it measures the model’s ability to classify positive, represented as 1 in this work, from 
negative classes, represented as 0. 

3.4 Data Set and Processing 

The dataset used in this work is the same dataset from the previous study in Chapter 1. Similarly, 
the denoising process applied to the CTG is also applied here. All datasets share the same size used 
in our previous study and that is 3519. This size was chosen for better comparison with the previous 
work and to reduce class imbalance. 

3.5 Target tasks for prediction 

After the denoising process, the same dataset was replicated to test its performance on two targets 
of Apgar score: 

1. Dataset where Apgar score 1 or 5 < 6 as suggested by our medical researchers. 

2. Dataset where Apgar score 5 < 7 as several guidelines and obstetricians label it as low 

Creating a dataset where Apgar score 5 < 4 was disregarded because of the number of 
samples being too small. As seen in Table 8, in the dataset, the number of positive classes is limited 
compared to the negative classes. Almost all positive classes from the original 38,073 records are 
included. All negative classes were picked at random using Pandas DataFrame.sample, which is a 
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data analysis and manipulation tool in Python. Gestational age is provided by the dataset and it is 
the only non-image feature used. The mean of gestational age is 38 weeks, max is 42 and min is 
22. 

 

Table 8. The number of positive and negative samples in training and 
testing data for the CNN model. 
Label No.	positive	

samples 
No.	negative	
samples 

Apagr1 |	Apgar5 
<6 

534 2985 

Apgar5 <	7 288 3231 
Apgar5 <	4 57 3462 

 

3.6   Prediction using deep CNN model 

We want our CNN model to be able to accept mixed data where the inputs are not of the same 
type. In our case, the inputs are two: CTG images and gestational age. Thus, our model consists of 
two blocks, each of which processes CTG images or embedded gestational-age vectors. This work 
uses Keras, a deep learning API written in Python, and functional API in Keras library which helps 
manage multi-input models. 

3.6.1   Image processing block 

The first block is made solely for handling CTG images as inputs. The block is a pre-trained 
EfficientNet CNN architecture [49]. The reason to use EfficientNet is because of its high accuracy 
and is more computationally efficient than the best existing CNN/ConvNets. There are multiple 
architectures of EfficientNet such as EfficientNetB0 and EfficientNetB1 where the difference 
among each architecture is the number of layers in it. We applied transfer learning; the model is 
pre-trained on ‘imagenet’ dataset weights [50]. While the weights in imagenet are trained to 
classify objects, our model can benefit from the weights of lower layers, for it can detect low-level 
features such as edges and curves in images, rather than training the model from scratch. We can 
then edit or add on top layers with our own layers and fine-tune all the layers. On top of 
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EfficientNet, we added two dense layers, which are hidden layers connected to each neuron in the 
following hidden layer, with one dropout layer after each dense layer. Dropout is used to reduce 
the likelihood of model overfitting. The extra added dense layers serve as fine-tuning to the model 
and the number of layers was chosen based on experiments and following best practices in the 
field. 

3.6.2 Meta-data processing block 

The second block is made to take in gestational age. Gestational age is one of the most important 
fetal factors affecting the heart rate curve of CTG [51]. In fact, Tables 6 and 7 show that the 
prediction accuracies for the Apgar scores are clearly improved by adding gestational age as a 
feature. Our dataset contains both low and high-risk pregnancies with the majority being low risk. 
The values of gestational age are indifferent in both cases. In their study on low and high-risk 
pregnancies, Ahmadpour-Kacho, Mousa et al. [41] found gestational age was the same in low and 
high-risk mothers. The second block is a simple neural network that includes two dense layers. 

3.6.3 Merging blocks 

The output of both blocks is concatenated into one merged input of 64 dimensions vector (32 dim 
from the first block and 32 from the second). The last layer is a single unit that uses a sigmoid 
activation function, which is suitable for our binary classification. The values of gestational age 
are scaled by preprocessing, and CTG images are also scaled to [0,1]. The dataset is imbalanced, 
and this affects the performance. One of the methods to solve the class imbalance is to use a class-
weight method which provides each class with a weight. The class with the fewer sample will have 
a heavier weight so it can be given more emphasis when training the model. The chosen optimizer 
and loss function were Adam and binary cross-entropy since Adam is the most recommended 
optimizer to be used in CNN and the latter is made for binary classification. Each target label was 
tested on CTG for 60 minutes and again on CTG for the first 30 minutes from the 60 minutes to 
test if CTG length has an impact on the performance. The model performance was tested using 5-
fold stratified cross-validation (CV). CV makes multiple model predictions on the dataset. This 
provides us with more confidence in the performance of the model. Stratified CV is a CV variant 
that creates folds with a similar percentage of samples for every class. It is useful for our 
imbalanced dataset because the number of negative samples is more than the number of positive 
samples. 
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Figure 3: The architecture of the proposed model. 
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Table 9: The chosen parameters for the model. 
Layer	Name Parameters 
efficientnet-b5: 
Model 

Max pooling 

Node 1: Dense Relu Activation function, L1 
regularization 

Node 1.1: Dropout 0.3 
Node 1.2: Dense Relu Activation function 
Node 1.3: Batch 
Normalization 

Relu Activation, L1 regularization 

Node 1.4: Dense Relu Activation function 
Node 1.5: Dropout 0.3 
Node 2: Dense Relu Activation function 
Node 2.1: Dense Relu Activation function 
Concatenate Output of Both nodes 
Merged 1: Dense Relu Activation function 
Merged 1.1: Dense Relu Activation function 
Merged 1.2: Dense Sigmoid Activation function 

 

3.7 Results, ML vs DL comparison, and discussion 

Our CNN distinguishes CTG patterns with a low Apgar score from patterns with a high Apgar 
score and achieves a higher AUC than the extracted features+ML as described in our previous 
study. Moreover, it is possible that the model learns more features from CTG with longer length 
as shown in Table 10. AUC was higher in both labels with CTG with a length of up to 60 minutes. 

 

Table 10: AUC after training the model for different targets. 

Label 
5-fold	CV	AUC	for 
30	minutes	CTG 

5-fold	CV	AUC	for	
up	to	60*	minutes 
CTG 

Apagr1|	Apgar5 <6 0.949 0.955 
Apgar5 <	7 0.953 0.958 
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The model was trained with a batch size of 8 and 10 epochs of training. More epochs caused 
the model to start overfitting. For the first block, all versions of EfficientNet were tested. The 
performance stopped improving after EfficientNetB5, so it is the version we based our results on. 

Our ML model in chapter 2 used a total of 44 features, most of which required an algorithm 
to be extracted. This required human interference throughout the whole process. Additionally, 
building an algorithm to extract CTG features can be prone to inaccuracies or may miss critical 
information, and choosing which CTG guidelines to base the algorithm upon makes it an intricate 
task. The current CNN model relied only on the pre-existing data without the need for a feature 
extraction algorithm. It means that it can bypass one layer of human interference. Relatively, it 
required less steps than the ML approach and was able to learn distinctive features from CTG 
images alone paired with gestational age outperforming our previous RF model with AUC 0.89. 
The training process depended on real data only; no data were augmented or synthesized since we 
believe that the number of samples is sufficient in our dataset. 

Gestational age is an important factor in both the ML and the CNN experiments because 
of its relationship with the Apgar score [41,51]. The diversity of gestational age in our dataset is 
one of the reasons our model achieved that performance in predicting a low Apgar score. The drop 
in performance could be connected to Cnattingius, Sven & Norman et al. findings where Apgar 
score prediction performance was better when used in infants with ≤ 31 gestational weeks than in 
full-term infants [52]. 

 
3.8 Conclusion 

The proposed CNN model predicted fetuses with low Apgar score using pre-existing features. The 
ML approach in chapter 2 used an algorithm based on JSOG guidelines to extract important 
features from CTG signals for interpretation. Different typical ML methods are applied to test the 
performance of the algorithm in detecting high-risk birth on large data gathered under clinical 
conditions. 

CTG signals were denoised for both the CNN and ML methods. Unlike the ML methods, 
the CNN method achieved higher AUC even though its features were fewer and available. It 
learned to distinguish features directly from the CTG images whereas ML relied on the features 
extracted from the algorithm. 
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The model acts as a pre-labor tool to guide the medical team during labor. On the other 
hand, we think one model is not enough to determine fetal safety. Relying on the outcome of only 
one test such as Apgar score or pH could be misleading [53]. In future work, to progress this work 
in the right direction, it is desirable to create multiple models and tools for different tests each of 
which serves a specific purpose. For instance, a combination of models that predicts Apgar score 
and umbilical cord pH can be used as a better indicator to detect complications in the newborn 
[20,40]. Apgar score works well as a short-term prognosis tool to assess expected risks on neonatal 
specifically among preterm infants [38,54,55]. There is also a need for a better method to solve 
data imbalance in the dataset. Finally, Our CNN is pre-trained and uses Efficientnet as an 
architecture which makes it relatively lightweight, still, CNN models, in general, require extensive 
time to train and they are computationally demanding. However, after a model is trained, it is quick 
in analyzing new samples, making them practical in a real-life situation. 
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Chapter 4 

Analyzing the Relationship between 
Abnormality in Fetal Heart Rate and low pH 
test using Anomaly Detection Generative 
Adversarial Networks model 

 
4.1 Introduction 

Obstetricians perform umbilical arterial cord blood pH testing immediately after birth and if fetal 
undergo oxygen deficiency they get a low score on the arterial cord hydronium ions concentration 
(pH) test. Generally, an umbilical arterial cord blood pH test score of 7.1 or more is considered 
non-acidosis. A low umbilical arterial cord blood pH test score is acidosis and is considered an 
indicator of risk to fetal health safety. Monitoring FHR is important to identify changes to oxygen 
supplied to fetal since any serious change to it may cause abnormal FHR and it is an indication of 
probable health risk to both the mother and infants [4]. Abnormality in FHR can also be a sign of 
the prolonged second stage of labor or the presence of meconium-stained amniotic fluid both of 
which are major causes for the infant to develop Hypoxic Ischemic Encephalopathy (HIE) [56]  

Through various research, it has been shown that artificial intelligence has the capability 
of experts in classifying abnormal health compromises such as cancer, and retinal diseases [57,58]. 
The idea of classification, also known as anomaly detection, is to identify unusual or rare data 
from other common ones. It is usually difficult to find abnormal data. In fact, this is one of the 
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main challenges facing ML and DL which cause datasets to be imbalanced or limited on minority 
class such as fewer fraudulent credit card transactions compared to real ones or phishing emails 
compared to reals emails, and so on.  

Training a ML or DL model to detect minority class is difficult if the difference between 
the number of minorities versus majority classes is huge as this will overclassify the majority class 
and misclassify the minority class, thus resulting in incorrect performance [59]. However, in 
medical diagnosis, minority class scarcity is far more apparent. For example, classifying malignant 
from a benign tumor, abnormal ECG signals from normal signals, etc. Many attempts tried to solve 
data/class imbalance such as giving more weight to minority class during training, oversampling, 
downsampling, weight class, etc. [60,61,62]. While every method did well in solving parts of class 
imbalance, in computer vision, synthetic images generated by Generative Adversarial Networks 
(GAN) [63] have been successful in mitigating high complexity class imbalance problems [64]. 
GAN is a subset of the DL framework for generating synthetic data instances similar to the training 
data using deep learning approaches. The vanilla GAN architecture consists of two deep networks, 
a discriminator (D) and a generator (G). The two networks are trained together where the generator 
generates a batch of data and the discriminator, which is trained to classify real from fake data, 
determines if the batch is real or fake. Since then, several versions of GAN have emerged where 
they fix some of the issues in the original GAN and concentrate on more specific problems. GAN 
achieved state of the art on different anomaly detection tasks such as manufacturing defect 
detection [65], breast cancer detection [66], Covid19 detection [67], and more. 

In this work, we choose to detect anomalies in CTG images by using the ANOGAN 
approach [23]. The idea of ANOGAN is to map new images to the latent space of the trained model 
to find the most comparable image and based on the similarity between the two images, the new 
images receive an anomaly score. In our case, a high anomaly score means the new image has an 
abnormal CTG signal and it is more likely to be of a fetus with a pH < 7.1. The anomaly score is 
computed using the weighted sum of residual loss and discrimination loss [23]. ANOGAN is built 
on DCGAN architecture [25]. However, we’re also going to apply it to two other GAN 
architectures; WGAN [26] and WGANGP [27]. If it is possible to predict abnormal CTG with a 
low pH score with no or little knowledge about CTG interpretation and minimum obstetricians’ 
intervention, it would help the medical team to prevent serious complications for the mother and 
fetus. 
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4.2 Related Works 

One of the major parts of this work is to train and generate CTG images using multiple GAN 
models on a dataset of CTG images. To the best of our knowledge, no study used GAN to train 
and generate CTG images. Puspitasari et al. used Time Series GAN (TSGAN) for data 
augmentation to solve data imbalance in the CTU-UHB CTG database [17] to improve 
classification when using DL models [68]. As mentioned earlier, the size of our dataset benefits 
us in avoiding the need for data augmentation especially that data augmentation in time series 
signals such as CTG is yet to be a standard procedure [69]. 

GAN has been successful in generating Electrocardiogram (ECG) images [70,71,72]. 
Hossain et al proposed a GAN model that generates and detects arrhythmia in Electrocardiogram 
(ECG) and achieved a state-of-the-art performance [73]. However, to the best of our knowledge, 
no study we know used GAN image generation to study or analyze anomalies in CTG images. 
Anomaly detection using GAN is the process of modeling the normal pattern using the adversarial 
training process where anomalies are identified and given an anomaly score [23]. Anomaly 
detection using GAN has grown exponentially. Geiger et al. made TADGAN for detecting 
anomalies in time series using GAN and achieved a higher F1 score compared to 8 different 
anomaly detection methods [74]. However, it concentrates solely on time series data whereas our 
focus is on anomaly detection in CTG images. GANomaly [75] and ANOGAN [23] are two of the 
most well-known studies in this field. Our work is inspired by the ANOGAN method where it 
treats the trained discriminator as a feature extractor, unlike traditional GAN’s discriminator which 
acts as a classifier and this is key to our experiment because we don’t use labeled data in training 
as we want the discriminator to learn the feature representation of training set and use 
backpropagation to map new images to the latent space and find images with similar features. 
However, the original ANOGAN was implemented on DCGAN [25] architecture only so, 
additionally, we are also implementing the experiment on two more GAN models: WGAN [26] 
and WGANGP [27].  

So far, to the best of our knowledge, this is the first study that applied an anomaly detection 
approach to CTG using generative models. No study, we are aware of, applied GAN or ANOGAN 
to generate CTG images or detect abnormality in FHR patterns. Another key factor in our study is 
that we use three generative model evaluation metrics to evaluate the quality of generated images, 
we use a big and extensive CTG dataset collected under clinical trials, and train our models only 
on real data; no data synthesize or augmentation was used. 
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4.3 Study Objective 

The aim of this study is to use ANOGAN to analyze FHR signals and their relationship with normal 
and low pH score which could cause complications for fetuses. pH score is a vital factor to 
designate the well-being of newborns and a low pH test score of < 7.1 is considered serious. 
Without using any guidelines for CTG interpretation, we use ANOGAN to train on a dataset 
containing CTG images of the last 120 minutes before birth for patients with non-acidosis pH (7.1 
or more), we also refer to them as normal or negative CTG images. Each record is divided into 
four parts of 30 minutes.  

After training, the generative model goes through an anomaly identification process tested 
on a dataset containing %50 acidosis CTG images and %50 non-acidosis CTG images. The 
expected result is that the generator performs well when generating common FHR patterns but 
fails or performs badly when generating uncommon patterns since it was trained only on normal 
CTG images. The generated images are compared with real images and receive an anomaly score 
based on FHR similarity. A small anomaly score implies that the difference between real and 
generated images is small and a big anomaly score implies a big difference between real and 
generated images. Finally, we analyze the received anomaly score for CTG images in the test set 
and mark the results of our observation.  

To make sure that the quality of the generated images is reliable, they are evaluated using 
three different metrics: Fréchet Inception Distance (FID) [28], Probability Density Function 
(PDF), Precision, and Recall (PR). This study is performed on real data only. Any form of data 
synthesis or augmentation was avoided as we rely on the size of our big dataset. Further, we’re 
using only FHR since UC is subject to maternal ECG interference. This study by no means aims 
to provide an interpretation of the medical implication of the cause, the meaning, or the condition 
of newborns that receive low pH test score. This work, however, aims to study the relationship 
between abnormal FHR patterns and low pH and identify FHR patterns that are likely to have low 
pH, and prepare for any needed procedure. 

 

4.4 The GAN Models 

GAN uses two models a generator and a discriminator. The generator is a convolutional neural 
network whereas the discriminator is a backward convolutional neural network. The generator 



 32 

network is a feed-forward neural network that continuously learns over time to create reliable fake 
data, such as fake cat images. It uses discriminator feedback to gradually improve its output until 
the discriminator can’t ideally distinguish its output from real data. The discriminator has a 
classification identification role where it learns a decision boundary for predicting which class a 
data point belongs to. Both models work together in such a way that the generator tries to outsmart 
the discriminator and the discriminator tries to not be tricked by the generator’s fake images. 
Whenever the discriminator correctly detects the synthesized work, through the use of 
backpropagation, it informs the generator on how to change its output so that it can be more 
realistic in the next epochs, this step is called weight updates. Figure 4 is a summarized image of 
the GAN system.  

	

	

Since the emergence of the first GAN in 2014, There have been many forms of GANs. In 
this research, three GANs were picked: DCGAN, WGAN, and WGANGP. Below we explain the 
reason for choosing the aforementioned GANs: 

 

4.4.1 Deep Convolutional Generative Adversarial Networks (DCGAN) 

DCGAN is one of the most popular GAN variations. Fundamentally, it focuses on employing the 
deep convolutional approach.  It is similar to GAN, however, in regular GAN, the aggregation 
levels in the generator and discriminator are replaced by transposed convolution to upsample 
images, also called full convolution or fractional-strided convolutions, (in the case of a generator) 

Figure 4: GAN model. 
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and strided convolutions (in the case of a discriminator). When training the discriminator (D), the 
generator (G) tries to maximize the error probability of the discriminator (D). The discriminator's 
role is to check if an image is a real training image or a false image from a generator, while the 
discriminator tries to improve its classification capability and distinguish real and fake images 
correctly. DCGAN utilizes Conv nets which look for areas of correlation within an image. It also 
includes batch norm, a technique that improves the training stability of the neural network, which 
allows higher learning rates and lower chances of overfitting. This makes it appropriate for image 
datasets in addition to its system being is easy to fully comprehend. DCGAN of Radford et al. has 
been improved in many aspects [76]. In this study, we’re using the latest version of DCGAN. 

 

	

	

	

	

4.4.2 Wasserstein Generative Adversarial Networks (WGAN) 

The main idea of using GAN is to minimize the distance between real data distributions and 
generated data distribution. The original GAN and multiple GAN variations use Jensen Shannon 
(JS) and Kullback-Leibler (KL) divergence for measuring the distance between real data 
distributions and generated data distribution. JS and KL divergence have drawbacks such as 
vanishing gradient and mode collapse. In GAN, a vanishing gradient is when the loss function 
quickly falls to zero because the generator doesn’t receive enough information from the 
discriminator. Mode collapse is when the generator generates only limited variations of the training 
samples in the dataset. Solving mode collapse is crucial, especially in our study, because the 
number of some FHR patterns is limited. WGAN replaces the JS and KL divergence with 
Wasserstein Distance, hence the name Wasserstein GAN. WGAN and WGAN-GP have shown 
success in eliminating the occurrence of vanishing gradient and mode collapse [26] [78]. Unlike 

Figure 5: DCGAN architecture. Figures source [25][77] 
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other variations of GAN, there is a relationship in WGAN between the convergence of 
discriminator (called critic in WGAN) loss function and generator loss function and the quality of 
generated images. A convergence in loss or close to convergence indicates a higher image quality. 
According to the WGAN paper “this is the first time in GAN literature that such a property is 
shown, where the loss of the GAN shows properties of convergence. This property is extremely 
useful when doing research in adversarial networks as one does not need to stare at the generated 
samples to figure out failure modes and to gain information on which models are doing better over 
others” [26]. WGAN architecture is similar to DCGAN in Figure 5 except 1. the discriminator is 
named critic and more iterations are being added to train it more than the generator. 2. the optimizer 
is modified from Adam to Root Mean Squared Propagation (RMSProp). 3. the loss is changed to 
Wasserstein loss. 4. weight clipping is enforced which clip every weight parameter in the network 
to between [-0.01,0.01] to force the critic to be within a certain range. 

4.4.3 Wasserstein Generative Adversarial Networks Gradient Penalty (WGANGP) 

While WGAN has great training stability and eliminates mode collapse, weight clipping in the 
critic needs careful tuning for it may cause the gradient of the model to vanish or explode [27]. 
Exploding gradient, in contrast to vanishing gradient, is when the generator cannot be updated 
because of receiving too much information from the discriminator and WGAN-GP has shown 
success in eliminating the occurrence of vanishing gradient and exploding gradient in addition to 
the original WGAN ability to element mode collapse [27]. WGAN-GP replaces the weight 
clipping parameter in WGAN with gradient penalty to help enforce Lipschitz constraints which 
makes the discriminator perform much better [26] and avoid weight clipping problems. 

4.5 Method 

This study can be summarized into the following steps: 1- Data Set and Processing which discuss 
the changes applied to the data set. 2- Define the GAN models for training and the applied 
hyperparameters. 3- Evaluate the trained models. 4- Compare generated images and anomaly 
score.  

4.5.1 Data Set and Processing 

The dataset is the same dataset used in Chapters 2 and 3. However, in this experiment, the last 120 
minutes of a CTG signal is divided into 4 parts where each part is a CTG image with a length of 
30 minutes. Part 1 is the first 30 minutes and part 4 is the last 30 minutes before giving birth. Any 
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signal that is shorter than 120 minutes is dropped. Additionally, this study focuses only on low-
risk pregnancies. Records with pre-term and post-term pregnancy are removed. This is why only 
gestational ages of <42 and >35 weeks are included. moreover, any pregnancy that resulted in a 
planned C-section was not included and any record with a null blood pH test is removed. After 
applying all of the aforementioned processes, the total number of positive records is 142 
positive(pH<7.1) records which were added to the test set. We added an equal number of 
negative(pH>=7.1) records to the test set and the total became 284 where 50% are positive and 
50% are negative. The negative classes in the test set were chosen randomly using Pandas 
DataFrame.sample, which is a data analysis and manipulation tool in Python. The total number of 
CTG images in the test set after dividing each record into four parts is 1136 images. Because our 
model is trained only on negative records, all positive records are used in the test set. The training 
set consists of 13723 negative records. The total number of CTG images in the training set after 
the divide is 54892.  

4.5.2 Define the GAN models for training and the applied hyperparameters. 

After denoising CTG and filtering the dataset, the same dataset was trained on three different 
models: DCGAN, WGAN, and WGAN-GP. We want the three GAN models to receive CTG 
images and learn or estimate the data distribution of the training set to be able to generate fake 
samples from that learned distribution. The model would be representing normal non-acidosis 
CTG images. The test set is a collection of unseen images from both normal and abnormal CTG 
images. Data imbalance in the training set is not a problem since it contains only negative classes. 
The three models were built and trained using Pytorch, a deep learning API written in Python. The 
three model share the same network which is summarized in Table 11. The common 
hyperparameters between the three models are: latent_size = 100, image_size = 64, batch_size = 
64 and channel = 3. The distinctive hyperparameters for DCGAN are: learning_rate = 1e-5, Adam 
for optimization, and a sigmoid activation function as the last layer. 

  The distinctive hyperparameters for WGAN are: critic_iterations = 5, a hyperparameter 
that adds more iterations when training the critic to train it more than the generator, weight_clip = 
0.01, to force the critic to be within a certain range, learning_rate = 5e-5 and the optimizer was 
changed to RMSProp. As for WGANGP, we added the gradient penalty function from the original 
work and applied it to every iteration in the training to satisfy Lipschitz constraints and prevent 
vanishing or exploding gradients. The critic_iterations = 5, learning_rate = 1e-4 and the optimizer 
was switched back to Adam. All of the hyperparameters applied to WGAN and WGANGP were 
taken directly from the original work. The image size of 64 was chosen for computation speed 
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purposes while keeping the CTG images as clear as possible. The latent space size, batch size, and 
the number of epochs were chosen based on experiments and following best practices in the field. 

Table 11: A summary of DCGAN, WGAN, and WGANGP networks. The three models share 
similar networks except for the last layer in DCGAN which is a sigmoid activation function  

Layer Name Parameters 
Generator  
ConvTranspose2d (100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False) 
BatchNorm2d (512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

ReLU Relu Activation function 
ConvTranspose2d (512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
BatchNorm2d BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

ReLU Relu Activation function 
ConvTranspose2d (256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 

BatchNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
ReLU Relu Activation function 
ConvTranspose2d (128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
BatchNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

ReLU Relu Activation function 
ConvTranspose2d (64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
Tanh() Tanh Activation function 
Discriminator  
Conv2d (3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
LeakyReLU (negative_slope=0.2, inplace=True) 
Conv2d (64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
BatchNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
LeakyReLU (negative_slope=0.2, inplace=True) 
Conv2d (128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
BatchNorm2d (256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
LeakyReLU (negative_slope=0.2, inplace=True) 
Conv2d (256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False) 
BatchNorm2d (512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
LeakyReLU (negative_slope=0.2, inplace=True) 
D_final  
Conv2d (512, 3, kernel_size=(4, 4), stride=(2, 2), bias=False) 
Sigmoid Sigmoid Activation function (For DCGAN only) 
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4.5.3 Generated Image Evaluation 

In general, evaluating the quality of generated images is still an evolving field of study and a 
perfect evaluation metric is yet to exist.  In fact, it is one of the main drawbacks of GAN since 
there is no certain tool to compare two GAN models [79]. Comparing the performance of different 
GAN models is difficult since GAN lacks an objective evaluation function [76] and quoting Borji’s 
‘Pros and Cons of GAN Evaluation Measure: New Developments’ “GAN evaluation is not a 
settled issue and there is still room for improvement” [80]. In essence, the evaluation measures 
rely on the quality of generated images of GAN models. Some Researchers studied the capability 
of human perception as an evaluation metric [81]. However, while the use of visual examination 
is intuitive and understandable in early training iterations and epochs, it is not practical to assess 
all images, especially in huge datasets. Also, the image analyst needs to be an expert in the type of 
analyzed images and need to be unbiased. Below we applied three metrics for evaluating generated 
images: 

4.5.3.1 Fréchet Inception Distance (FID) 

Proposed by Heusel et al. FID is a metric for evaluating images generated by GAN [28]. So far, it 
is the most popular metric for evaluating generated images [80].  It calculates the feature distance 
between the generated and real images. The resulting score implies the similarity of the compared 
images distribution and the lower the FID score the better the quality of the generated images is. 
It is an improved version of the Inception Score (IS) [76] as it solves IS drawbacks. Both 
techniques depend on the use of a pre-existing classifier inception v3 model (InceptionNet) trained 
on The ImageNet dataset [50]. Using the pool_3 layer of the Inception model to extract 2048-
dimensional activations for both real and generated images, the function 
(calculate_activation_statistics) models the data distribution for the features using a multivariate 
Gaussian distribution. “The difference of two Gaussians is measured by the Fréchet distance also 
known as Wasserstein-2 distance” [28]. For this study, the best achieved FID score was 47 for 
DCGAN, 35 for WGAN, and 43 for WGANGP. 
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4.5.3.2 Probability Density Function (PDF) 

By using PDF from probability theory, we can get an indication of the likelihood that the generated 

images are using the same or similar features of real images features. Generally, based on the 

learned features, the generator should be able to map features from latent space to the targeted data 

distribution. This is can be seen when plotting the probability density of GAN’s generated images 

compared to the real probability density of the data distribution. During training, the generator is 

expected to learn to create a distribution similar to the real probability density and this only 

happens after a number of epochs until the two distributions become as similar as possible. In 

earlier attempts, the generator starts with random noise and through continuous epochs, the 

generated distribution improves and becomes more similar to the real data distribution. The upper-

Epoch Epoch

Epoch

FI
D

FI
D

FI
D

Figure 6: A plot of the achieved FID through all the training 
process for DCGAN, WGAN and WGANGP. The upper-left 

is a demonstration of how FID is affected when noises or 
distortions were applied on high quality image [28]. 

DCGAN 

WGANGP WGAN 
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left images in Figure 7 are for a plot of probability density after 60 epochs. The generated 

distribution has taken the shape of the real distribution but the similarity gets better after more 

training. After training for about 120 epochs, the generated distribution is more similar to the real 

one. The X axis in Figure 7 denote the extracted features from the real test set (blue) and the 

extracted features from generated images of the test set (green). The features were extracted using 

the trained discriminator and then reshaped to vectors. The Y axis, according to PDF, is the 

probability density of that feature. Basically, if it is high, it means the number in the X axis was 

repeated many times, hence the spikes in the plot. 

 

 

 

 

 

 

 

 

   
 

  

 

 

 

Real
Generated

Figure 7: A plot of the generated distribution compared to the 
real distribution of DCGAN, WGAN and WGANGP.  
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4.5.3.3 Precision and Recall (PR)  

PR is a key evaluation metric in ML and DL. However, applying it in GAN is still an open area of 
research. As seen in Figure 8, we can have an intuition about the quality of generated images. For 
example, we can assume high precision when the generated image is very similar to the real image. 
The recall can be evaluated by the variety of the generated images. If the generator is producing 
many similar images, this is an indication of low recall.  

	
Figure 8: Precision and recall in GAN models. Figure source [79] 



 41 

There are multiple approaches that tried to calculate PR for generated images [82,83,84]. 
We use [84] code for calculating precision and recall and Table 12 shows the achieved precision 
and recall for DCGAN, WGAN, and WGANGP models. While all models have a high recall, we 
think a major factor affecting the precision score is the size of the CTG images (3x64x64) inputted 
into the models. The small size causes CTG image quality to drop and this was done to reduce the 
immense computation time needed to complete the training process since increasing image size 
will intricate this issue even more. 

 

Table 12: The achieved precision and recall for DCGAN, WGAN, and WGANGP. 
Model Precision Recall 
DCGAN 0.81 0.91 
WGAN 0.83 0.99 
WGANGP 0.86 0.96 

	

4.5.4 Compare the generated images and anomaly scores 

We use the trained model to generate the images in the test set and assign each real image in the 
test set with an anomaly score based on the difference between the real and the generated image. 
The anomaly score is calculated using the weighted sum of residual loss and discrimination loss 
where residual loss measures the visual dissimilarity between real and generated images and 
discrimination loss measures the feature dissimilarity between real and generated images. The 
formula is described in detail in the ANOGAN paper [23]. If the two images are very similar, the 
real image gets a low anomaly score. A higher Anomaly score indicates a bigger difference 
between the two images. 

Figure 9 shows an example of how the model performs poorly in generating less occurring 
or infrequent CTG patterns and perform generally well in generating images with frequently 
recurring patterns. The pattern in image A is bradycardia, which is a condition that occurs when 
the FHR baseline is below the average. This is not a common pattern, especially in normal CTG 
records since bradycardia is linked to an increased risk of acidemia [85]. The generated image fails 
to generate the real image and we see that the difference between the two images is big, thus the 
anomaly score is 191. The same applies to image B where the real image contains high variability 
in FHR. The real and generated images show no similarity so the anomaly score is relatively high 



 42 

which is equal to 299. The level of anomaly score changes if the experiment is repeated, however, 
the difference gap between all images still persists; the image will receive a relatively high 
anomaly score compared to the other CTG images in the same set. Images C and D show FHR 
patterns which are common in the training set. The difference between the generated and real 
image is small so they both receive relatively lower anomaly score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9: Generated CTG images compared to the real and the 
recorded anomaly score. 
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Figure 10 demonstrates varied samples of generated images for DCGAN, WGAN, and 
WGANGP. By looking at the generated images, we can see that the images generated by DCGAN 
are the least similar compared to the other models. It generates the general form of CTG but tends 
to fail in generating the details in a signal. WGAN and WGANGP performance are close as they 
both generate the majority of CTG signals. We noticed when parts of a CTG include abnormalities 
such as high variability or a sudden artifact, both models generate the CTG without the abnormal 
part as can be seen in samples numbers 2,3, and 6. We also noticed that WGAN is less likely to 
fail than WGANGP. It generates some parts of a signal even in some abnormal CTG signals such 
as tachycardia or bradycardia and sample number 8 is an example of that. This could be related to 
WGAN’s high recall. As discussed earlier, a high recall in GAN means higher diversity of 
generated images. WGANGP has slightly higher precision than WGAN, however, judging the 
difference between the two by relying on visual assessment is challenging.  
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Figure 10: Samples of generated CTG images compared to the 

real images for DCGAN, WGAN and WGANGP. 
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4.6 Results and Discussion 

After getting an anomaly score for each image in the test set, we created a spreadsheet and listed 
all positive and negative parts 1 of the CTG image in one column. The same is applied to parts 2,3 
and 4 where each part is in a separate column. As mentioned in the data processing step, we divided 
the last 120 minutes of each record in the data set into 4 parts where each part is a CTG image with 
a length of 30 minutes. Part 1 is the first 30 minutes and part 4 is the last 30 minutes before giving 
birth. The total number of each part is 284 (142 positive and 142 negative). Next, all parts were 
sorted based on the highest anomaly score. Table 13 shows the percentage of positive parts 
compared to negative parts for DCGAN. For example, the highlighted cell in Table 13 means that 
85% of the highest 20 part 1 of CTG images are positive. And the highlighted 25% means that 
25% of the lowest 20 are positive part 1. 
 
Table 13: A summary of the number of positive CTG compared to negative for all the four parts 
when using DCGAN 

CTG images 120 
divided into 4 parts  

Number of positive 
compared to 
negative in part 1  

Number of positive 
compared to 
negative in part 2 

Number of positive 
compared to 
negative in part 3 

Number of positive 
compared to negative in 
part 4 

Percent in the 
Highest 20  

85%  70% 60% 50% 

Percent in the 
Highest 50  

80% 66% 56% 52% 

Percent in the 
Highest 100  

66% 53% 55% 55% 

 
Percent in the 
Lowest 20  

25% 35% 20% 55% 

Percent in the 
Lowest 50  

38% 40% 40% 42% 

Percent in the 
Lowest 100  

38% 44% 44% 47% 

 
Table 14: A summary of the number of positive CTG compared to negative for all the four parts 
when using WGAN 

CTG images 120 
divided into 4 parts  

Number of positive 
compared to 
negative in part 1  

Number of positive 
compared to 
negative in part 2 

Number of positive 
compared to 
negative in part 3 

Number of positive 
compared to negative in 
part 4 

Percent in the 
Highest 20  

90%  75% 60% 45% 

Percent in the 
Highest 50  

84% 60% 54% 54% 

Percent in the 
Highest 100  

65% 54% 54% 53% 

 
Percent in the 
Lowest 20  

40% 45% 50% 55% 

Percent in the 
Lowest 50  

34% 42% 42% 64% 

Percent in the 
Lowest 100  

37% 43% 47% 51% 



 49 

Table 15: A summary of the number of positive CTG compared to negative for all the four parts 
when using WGANGP 

CTG images 120 
divided into 4 parts  

Number of positive 
compared to 
negative in part 1  

Number of positive 
compared to 
negative in part 2 

Number of positive 
compared to 
negative in part 3 

Number of positive 
compared to negative in 
part 4 

Percent in the 
Highest 20  

85%  70% 45% 40% 

Percent in the 
Highest 50  

80% 60% 52% 52% 

Percent in the 
Highest 100  

65% 53% 52% 53% 

 
Percent in the 
Lowest 20  

40% 45% 45% 65% 

Percent in the 
Lowest 50  

40% 42% 50% 56% 

Percent in the 
Lowest 100  

35% 45% 52% 52% 

 
 

Looking at Table 13, it can be seen that positive CTG signals tend to have a higher anomaly 
score in part 1 compared to negative part 1, which is the first 30 minutes of the last 120 minutes 
before giving birth. For example, if we look at the highest 100 in Table 13, we see the number of 
positive parts 1 is 66%. This is consistent even if we look at the highest 20, 50, and 100 in DCGAN, 
WGAN, and WGANGP; all of them resulted in a higher anomaly in part 1 compared to negative 
part 1. The same can be observed in parts 2 and 3 but it is more prominent in part 1. The results of 
the three models are close, particularly in the highest 100 part. The experiment has been repeated 
several times and the results persist except the percentage varies between 65% and 70%. This 
applies to the three models. 
 

Based on the above, we can see that positive CTG records tend to have higher anomaly 
score than negative records except for part 4. Excluding DCGAN, the number of positive parts 4 
in both the highest 100 and the lowest 100 is close whereas positive parts 4 tends to be more in the 
lowest as shown in the lowest 20 and 50 for WGAN in Table 14 and WGANGP in Table 15. In 
fact, compared to other parts in the lowest records, we can clearly see positive parts 4 are more 
than other positive parts, especially part 1 being the fewest. We also noticed that the anomaly score 
in multiple positive records was big in part 1 but drop significantly in part 4, unlike negative 
records which a little bit more constant. In order to confirm this, Tables 16.1 and 16.2 summarize 
a spreadsheet where one column has all the positive parts and another column has all the negative 
parts regardless of the parts number. The two columns were sorted based on the highest anomaly 
score, then the number of each part in the highest 20, 50, and 100 and the lowest 20, 50, and 100 
was counted. 
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Note: each part in a record was counted as a separate image, there are 1136 CTG images; 
568 of them are positive and 568 are negative. If divided by the parts, 284 are part 1, 284 are part 
2, 284 are part 3, and are 284 part 4. The highlighted row in Table 16.1 means in the top 100 
positive rows with the highest anomaly score, 51% of them are part 1, 23% of them are part 2, 
16% part 3, and 10% part 4.  
 
Table 16.1: a summary of all positive CTG images sorted based on the highest anomaly score. 
DCGAN 

Positive CTG images 120 minutes 
divided into 4 parts  

Number of 
parts1  

Number of 
parts2 

Number of 
parts3 

Number of parts4 

Percent in the Highest 20 records  55% 15% 15% 15% 
Percent in the Highest 50 records 46% 22% 22% 10% 
Percent in the Highest 100 records 51% 23% 16% 10% 
 
Percent in the Lowest 20 records 10% 20% 10% 60% 
Percent in the Lowest 50 records 10% 26% 22% 42% 
Percent in the Lowest 100 records 15% 24% 25% 36% 

 
Table 16.2: a summary of all negative CTG images sorted based on the highest anomaly score. 
DCGAN 

Positive CTG images 120 minutes 
divided into 4 parts  

Number of 
parts1  

Number of 
parts2 

Number of 
parts3 

Number of parts4 

Percent in the Highest 20 records  25% 25% 35% 15% 
Percent in the Highest 50 records 32% 26% 24% 18% 
Percent in the Highest 100 records 31% 30% 23% 16% 
 
Percent in the Lowest 20 records 5% 30% 25% 40% 
Percent in the Lowest 50 records 10% 30% 30% 30% 
Percent in the Lowest 100 records 16% 27% 27% 30% 

 
 

In Table 16.1, the number of positive parts 1 in the highest 100 and the number of parts 4 
in the lowest 100 are both high; 51% for part 1 and 36% for part 4. On the other hand, Table 16.2 
shows that the number of negative parts 1 in the highest 100 is 31% and the number of parts 4 in 
the lowest 100 is 30%. This confirms that positive records tend to have a higher anomaly score in 
part 1 compared to part 1 in negative records and a lower anomaly score in part 4 than its 
counterpart in negative records. Again, this outcome is more noticeable in WGAN in Table 17 and 
WGANGP in Table 18 and we further clarify this in Figure 11, 12, and 13.  
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Table 17.1: a summary of all positive CTG images sorted based on the highest anomaly score. 
WGAN 

Positive CTG images 120 minutes 
divided into 4 parts  

Number of 
parts1  

Number of 
parts2 

Number of 
parts3 

Number of parts4 

Percent in the Highest 20 records  60% 15% 5% 20% 
Percent in the Highest 50 records 56% 20% 14% 10% 
Percent in the Highest 100 records 51% 23% 17% 9% 
 
Percent in the Lowest 20 records 15% 10% 30% 45% 
Percent in the Lowest 50 records 10% 18% 28% 44% 
Percent in the Lowest 100 records 8% 19% 28% 45% 

 
Table 17.2: a summary of all negative CTG images sorted based on the highest anomaly score. 
WGAN 

Positive CTG images 120 minutes 
divided into 4 parts  

Number of 
parts1  

Number of 
parts2 

Number of 
parts3 

Number of parts4 

Percent in the Highest 20 records  40% 30% 25% 5% 
Percent in the Highest 50 records 38% 18% 24% 20% 
Percent in the Highest 100 records 31% 33% 21% 15% 
 
Percent in the Lowest 20 records 10% 25% 20% 45% 
Percent in the Lowest 50 records 12% 26% 32% 30% 
Percent in the Lowest 100 records 12% 26% 31% 31% 

 
 
Table 18.1: a summary of all positive CTG images sorted based on the highest anomaly score. 
WGANGP 

Positive CTG images 120 minutes 
divided into 4 parts  

Number of 
parts1  

Number of 
parts2 

Number of 
parts3 

Number of parts4 

Percent in the Highest 20 records  55% 30% 10% 5% 
Percent in the Highest 50 records 58% 18% 14% 10% 
Percent in the Highest 100 records 54% 22% 16% 8% 
 
Percent in the Lowest 20 records 0% 30% 25% 45% 
Percent in the Lowest 50 records 4% 20% 26% 50% 
Percent in the Lowest 100 records 9% 23% 32% 36% 

 
Table 18.2: a summary of all negative CTG images sorted based on the highest anomaly score. 
WGANGP 

Positive CTG images 120 minutes 
divided into 4 parts  

Number of 
parts1  

Number of 
parts2 

Number of 
parts3 

Number of parts4 

Percent in the Highest 20 records  40% 30% 20% 10% 
Percent in the Highest 50 records 34% 18% 32% 16% 
Percent in the Highest 100 records 35% 27% 22% 16% 
 
Percent in the Lowest 20 records 10% 15% 40% 35% 
Percent in the Lowest 50 records 10% 28% 30% 32% 
Percent in the Lowest 100 records 14% 27% 30% 29% 
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Another thing to note is the order of the anomaly score of the four parts of the CTG signal. 
For instance, in Table16.1, Table 17.1, and Table 18.1, in the highest 100, we see the order of the 
majority of the four parts goes part 1 > 2 > 3 > 4. For example, the average anomaly score of the 
highest 100 in Table 17.1 is 242 for part 1, 209 for part 2, 197.5 for part 3, and 183 for part 4. This 
is almost the same for Tables 16.2, Table 17,2, and Table 18.2 except the density is more disturbed 
between the four parts. We repeated this experiment multiple times and the results are consistent 
for both parts 1 and 4. Nevertheless, the anomaly scores for parts 2 and 3 are usually close to each 
other so the variability between these two parts changes a bit between experiments. 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: All positive and negative CTG images after dividing each record into 4 parts. Each dot 
represents a CTG image and all of the images are sorted based on the highest anomaly score of 

WGAN model. The number of images is 1136; 568 are positive and 568 are negative. 

A) Positive images versus negative images 
 

B) Positive images versus negative images. The numbers on the dot represent the part number and the + signum denote 
positive CTG image and the – signum denote negative. 

 

Negative (pH <7.1) 

Positive (pH <7.1) 

Lowest Anomaly Highest Anomaly 

Negative (pH <7.1) 
Positive (pH <7.1) 

Lowest Anomaly Highest Anomaly 
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Figure 12: A bee swarm plot of Table 14 where (A) represents the part 1 column and (B) the part 4 
column.  

Figure 13: The above subplots show that positive records tend to have a higher anomaly score in 
part 1 compared to part 1 in negative records and a lower anomaly score in positive part 4 than its 

counterpart in negative records. 

A) The top 100 positive parts with the highest anomaly score. 
51% of them are part 1. 

 

B) The top 100 negative parts with the highest anomaly score. 
31% of them are part 1. 

 

C) The top 100 positive parts with the lowest anomaly score. 
45% of them are part 4. 

D) The top 100 negative parts with the lowest anomaly score. 
31% of them are parts 4. 

A) All positive and negative part 1 of the CTG images sorted based on the highest anomaly. 65% of 
the highest 100 are positive. 37% of the lowest 100 are positive. 

 

B) All positive and negative part 4 of the CTG images sorted based on the highest anomaly. 64% of 
the lowest 50 are positive. 54% of the highest 50 are positive. 

 

Lowest Anomaly Highest Anomaly 

Negative (pH <7.1) 

Positive (pH <7.1) 

Lowest Anomaly Highest Anomaly 

Part 2,3 and 4 
Part 1 

Part 2,3 and 4 
Part 1 

Part 1,2 and 3 
Part 4 

Part 1,2 and 3 
Part 4 
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Lastly, the number of chosen epochs for training varied between models. For example, 
after training the DCGAN model for many epochs such as 150 epochs and more, the generated 
images have shown signs of mode collapse and the FID score curve, which was giving lower values 
between epochs, start to give higher values. This is why we trained DCGAN for about 100 epochs. 
As mentioned earlier in this chapter, WGAN uses the Wasserstein loss function which has a 
correlation between the divergence of generator and discriminator loss and the quality of generated 
images. For this reason, the WGAN model was trained until convergence occurred which was 86 
epochs. As for the WGANGP model, it was able to be trained for many epochs without suffering 
from mode collapse, vanishing, or exploding gradient. We relied on the performance of FID as an 
indicator of when to stop WGANGP training. We trained the model for 400 epochs but the FID 
performance stopped improving after 200 epochs, thus we stopped training at about 200 epochs. 
 
 

 
 
 
 
 
 
 
 

Generator and Discriminator Loss During Training Generator and Critic Loss During Training

Generator and Critic Loss During Training
Epoch Epoch

Epoch

DCGAN WGAN

WGANGP

Figure 14: A plot of Generator and Discriminator/ Critic loss for 
DCGAN, WGAN and WGANGP. 
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4.7 Conclusion 

In this study, we processed the dataset to have only low-risk birth. all pre-term pregnancies, post-
term pregnancies, and C-sections were excluded from the study, unlike the two previous studies 
in chapters 2 and 3. Because of the nature of the experiment, the training set includes just negative 
records which help in preventing data imbalance. The results are not to be compared with the 
previous studies, rather, it utilizes anomaly detection in studying the difference between CTG 
images of low pH patients versus normal pH patients. 

Using ANOGAN, we found that CTG images with pH < 7.1 tend to have higher anomaly 
score compared to CTG images with pH >= 7.1. The model gives a higher anomaly score to 
uncommon FHR patterns and we think this can be helpful for a medical team to support their 
decision during birth. The performance of three trained models: DCGAN, WGAN, and WGANGP 
was evaluated using FID, PDF, and PR. The quality of the generated images can be further 
improved; however, it requires higher computation capabilities. 
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Chapter 5 

Conclusion 
Below we describe the summary of the thesis and how the results can be better further improved 
in future studies.  
5.1 Research Results 

Cardiotocography (CTG) is the practice of reading fetal heart rate and uterine contraction in the 
third trimester of pregnancy and during birth. CTG has drawbacks such as high noise, diagnosis 
contradictions, and the need for the continuous presence of an expert to read CTG signals. Many 
researchers see that the current progress in artificial intelligence has the capability in finding 
potential solutions to some of CTG challenges.  

We proposed different machine and deep learning approaches which could act as a 
prognosis tool in predicting high-risk birth. The contributions of this work can be summarized as 
the following:  

(1) An improved CTG denoising algorithm  

The denoising algorithm has the capability to reduce artifacts from high noise signals with 
minimum alterations to the original form of the signal. Our dataset is collected under clinical 
condition and include signals with high noise. Our denoising process can be helpful in such 
scenarios.  
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(2) Algorithm for extracting features using JSOG 5-level FHR patterns and applied ML 
methods to classify high-risk birth using pH and Apgar score 1 and 5. 

We built an algorithm to extract important features from CTG signals such as baseline, 
accelerations, decelerations, etc. based on JSOG guidelines. We tested the extracted features 
using SVM, RF, ANN, and DT and achieved an AUC of 0.89 using 5-fold cross-validation. 

(3) A multi-input CNN model to classify neonatal with low Apgar using real data only. 

Our CNN model is intended to be very light and uses features that are easily available. It is built 
upon EfficientNet CNN architecture and pre-trained on imagined dataset weights which give it 
both an advantage in accuracy and computation speed.  Using 5-fold cross-validation, the model 
achieved an AUC of 0.949 when classifying fetal with the risk of a low Apgar score. 
Additionally, we found that performance got better when we trained the model with CTG images 
with longer signal lengths. 

(4) Implemented Anomaly Detection using Generative Adversarial networks (ANOGAN) to 
generate CTG images and compare normal and abnormal image anomalies. 

We implanted the ANOGAN approach using three GAN architectures: DCGAN, WGAN, and 
WGANGP, and evaluated their ability in generating images through recognized evaluation 
metrics in the field. The three models were trained on CTG images of the last 120 minutes before 
birth and all of the records were for patients with pH >= 7.1. Class imbalance was not an issue 
since training was only on one class. The achieved results show that the majority of CTG images 
with pH < 7.1 have a higher anomaly score than CTG with pH >= 7.1. To the best of our 
knowledge, no study applied GAN or ANOGAN to generate CTG images. 

5.2 Future Works 

This study uses multiple AI approaches to classify high-risk childbirth. We believe there is more 
that can be done to achieve better feature extraction, data balance, accurate classification, quality 
CTG image generation, and anomaly score. One of the issues when implementing AI on CTG is 
determining the length of the signals needed for the study. Understandably, not all CTG signals 
share the same length so they have to be tailored to a specific length for consistency when 
training and testing the AI model. The critical information that causes fetal to be at risk, for 
example, might be found in a signal within the last 20 minutes before birth and some may be 
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found in the last 120 minutes before birth. Another challenge is even after classifying abnormal 
CTG, there are other factors that need to be present before medical intervention such as 
childbirth progression and the risk profile of the mother [24]. In conclusion, this study can be 
further improved by including more pre-obtained features, more accurately gathered records, and 
involving obstetricians and medical experts in the trials of AI experiments. Our approach which 
focused on incorporating interrelated artificial intelligence decision support tools could support 
the medical team with guidance in mitigating the risks they confront in childbirth.  
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