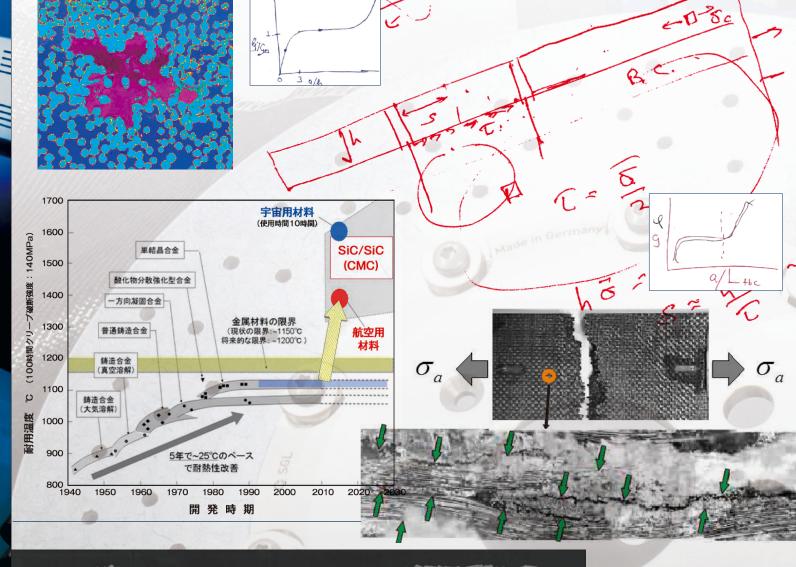
革新的セラミックス複合材料の実用化をめざす、 最先端の研究拠点。

東京工科大学片柳研究所内に設置されている「セラミックス複合材料センター:CMCセンター (The Center for Ceramic Matrix Composites) は、次世代材料として期待を集める 「セラミックス複合材料: CMC (Ceramic Matrix Composites)」の開発に産官学連携 で取り組む、世界に類を見ない先端研究施設です。

CMCは、セラミックスの母材にセラミックス繊維を複合化することにより、優れた損傷許容 性を付与した複合材料であり、金属より軽く、高い耐熱性を有するなどの特長から、航空機 用エンジンをはじめ、発電用ガスタービンや原子力用燃料棒といったエネルギー関連部材、 自動車部品など、幅広い分野への適用が想定されています。今後、わが国の産業界の 競争力を強化していくためにも、いち早く実用化が望まれる最重要な工業材料のひとつと 言っても過言ではありません。

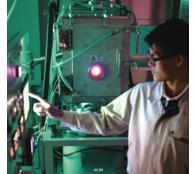

経済産業省では、2015年よりCMCの研究開発を推進する新拠点の設立準備に着手。 高度かつ多様な共同研究プロジェクトを展開するに相応しい研究環境が整う東京工科大学 に、CMCセンターの設立が決定、2018年より本格稼働を開始しました。

当センターでは、CMCの実用化に向けた課題の解決に幅広い英知を結集して取り組み、 世界のCMC研究を先導していくとともに、企業および大学の研究者、大学院生、学部 学生らに、「最新の学問成果を生かした研究活動と実践的教育」の機会を提供することで、 産業界の未来を担う優れた人材の育成に貢献することもめざしています。

体系化された組織構成と研究部門

CMCセンターの組織構成は、①先端素材・プロセス部門、②性能評価・解析部門、③計算機利用・信頼性解析部門、④技術 支援部門、⑥研究事務支援室からなる研究部門ユニット制となっており、各部門長には東京工科大学教授および特別研究教授 が就任しています。また、外部有識者からなるアドバイザリーボードを設置し、その意見や助言をセンター運営に生かしていく体制 も構築しています。さらに、研究活動に対する指導・支援を仰ぐことを目的として、CMC研究に携わる国内の企業や大学、研究 機関の有力研究者らを受け入れるシニアフェローや客員教授のポストも設けました。今後は、国内および海外企業との円滑な 共同研究を推進するフレームとして、「共同研究部門」も設置されます。

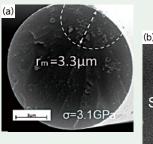
セラミックス複合材料センター

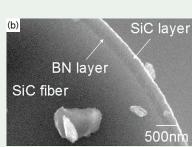

The Center for Ceramic Matrix Composites

問い合わせ先

東京工科大学 片柳研究所 セラミックス複合材料センター

〒192-0982 東京都八王子市片倉町1404-1 TEL 042-632-1566 (直通) URL https://www.teu.ac.jp/karl/cmc/ e-mail:kl-cmc@stf.teu.ac.jp

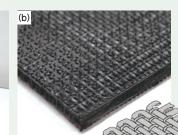

先端素材・プロセス部門


Advanced Materials and Processing Division

SiC系CMC(SiC / SiC) の構成材料であるSiC繊維、繊維表面コーティングおよびSiC系繊維と SiC系マトリックスとの複合化技術に関する研究開発を推進する部門です。繊維の持つ力学特性・ 熱的特性を犠牲にせずマトリックスと複合化する技術の開発に取り組むほか、SiC繊維自身の高温 環境下における劣化現象の解明も行っています。また、高速・低コストプロセスの探求、国内企業との 密接な連携による国内サプライチェーンの構築も進めています。

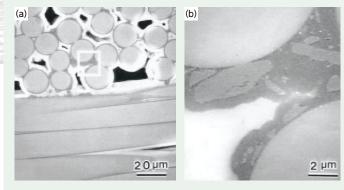
セラミックス繊維の高性能化

① SiC繊維の力学特性 ② SiC繊維の高性能化 ③ SiC繊維の表面コーティング



■ SiC繊維の引張破断面

SiC繊維の引張破断面を走査型電子顕微鏡で詳細に観察することによ り、CMC中での繊維の引張強度を求めることが可能です。この方法を SiC/SiC中の繊維の強度を測定するために適用しています。画像 (a) はSiC繊維の引張破断面と破壊形態観察(ミラー半径rmの評価)、(b)は SiC繊維表面のBNおよびSiCの2層被覆。



繊維束の状態で供給されるSiC繊維を三次元織物構造に することにより、CMCの強化素材として最適な利用方法を追究

しています。また、織物にする前に繊維の劣化を生じさせない、新しい コーティング技術の開発にも取り組んでいます。 画像 (a) はCMCに 使用される各種のSiC繊維、(b) はSiC繊維から成る三次元織物の表 面写真とその概念図。

■CMC複合化プロセス

(1) 高速・低コストプロセス (2) 最適複合化プロセス条件 (3) 複合化条件と材料特性

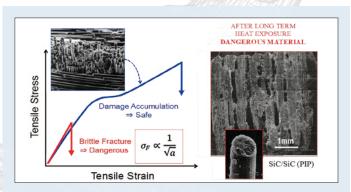
■ SiC / SiCの複合化組織

画像(a)はSiCマトリックス中に高温特性改善のために粒子を添加した ときの組織、(b) は (a) 中央部の□部分の拡大画像。SiCマトリックスの 組成や組織を最適化し、SiC/SiCの高温下での耐久性や疲労・クリープ などの時間依存力学特性を大幅に向上させることを目指しています。

■ 溶融Si含浸反応法によるSiC / SiC製造装置

CMC製造の重要な課題 図るために、溶融状態に あるSiをSiC繊維と炭素 の予備成型体 (プリフォー ム体) 中に含浸し、SiC繊 維の特性を劣化させるこ となく高性能なSiC/SiC を作製する技術を開発し

製造条件を最適化する ための理論解析やシミュ レーションにも取り組んで


性能評価·解析部門

Evaluation, Analysis and Performance Division

CMCの信頼性を確保し、CMCを安全に利用するための技術開発を行う部門です。航空機用エンジン 部材としてSiC / SiCを利用する際の検査技術や、CMCの劣化現象を計測する技術の構築を進めて います。また、高温試験の実施が可能な設備を利用して、CMCの力学特性測定手法の開発にも取り 組むほか、CMC実用化に必要な耐環境コーティング(EBC: Environmental Barrier Coatings) に関する研究開発も行っています。

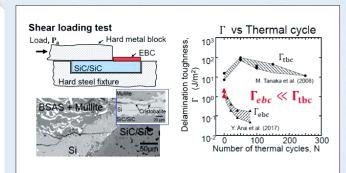
CMCの力学特性評価・解析

① CMCの高温力学特性 ② CMCの変形と破壊機構 ③ CMCの損傷累積機構

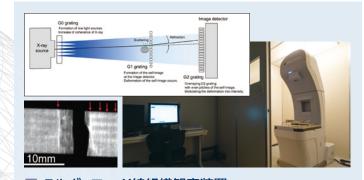
■ CMCの引張応力 — ひずみ挙動

CMCは、セラミックスのような脆性的な破壊を示さず、材料中にミクロ な損傷を許容することが可能な材料です。CMCの力学特性について、 ミクロな現象とマクロな現象の関連性などを調べ、CMCを安全に利用 することに役立てています。

■ 1500℃大気中高温クリープ・疲労試験装置


センターでは最新鋭の試験 機を導入し、大気中において 1500℃までの温度領域で、 CMCの力学特性評価や変 形・破壊挙動の解析を行っ ています。

時間依存特性に関するシミュ レーションも行っています。


耐環境コーティング (EBC)

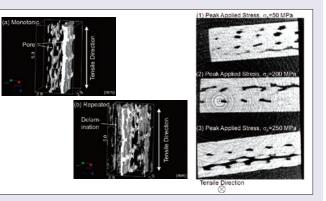
① EBCの高温劣化機構 ② EBCの剥離抵抗の評価 ③ EBC用材料の開発

■ EBC層のCMC基材からの耐剥離特性

耐環境コーティング (EBC) のCMC基材からの耐剥離特性を定量的に 評価し、EBCの剥離寿命の予測を行っています。また、実使用環境下 での耐環境性に優れたEBC材料や高温での化学反応を含むEBC材料 の劣化機構についても研究を進めています。

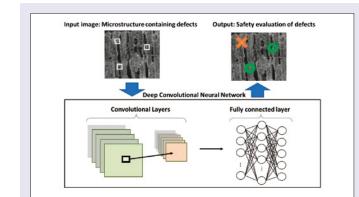
■ タルボ・ロー X線組織観察装置

CMCを透過するX線の位相の変化と透過したX線の屈折の変化を検 出することにより、CMC内部の繊維織物構造、ポアやクラックの存在を 観察する装置です。CMCに力学的な負荷を加えることが可能であり、 CMCに力学負荷が加わった際のCMC中の破壊過程を調べます。この 結果は計算機科学でも利用されています。


計算機利用・ 信賴性解析部門

Integrated Design and Reliability Division

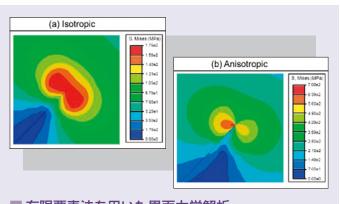
計算機科学を利用して研究開発の高効率化を図る技術を研究する 部門です。CMCのバーチャルテスト手法の開発やデータベースの構築、 試験評価結果の解析に計算機を利用する方法の開発などを行って います。CMC材料のバーチャルテストの方法を発展させ、実使用環 境下での挙動の解析や耐環境コーティングの物理的および化学的損 傷の解析にバーチャルテストを適用する準備も進めるほか、CMCの中 で重要なSiC/SiCに関しては、データベースの構築も計画しています。


材料•部材検査技術

1) X線CTイメージの解析・分類 2 CMC部材表面ひずみ計測 3 CMC部材振動モードの計測

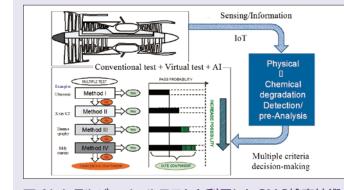
■画像処理技術の検査への応用

X線CTを用いれば、CMC中に発生した損傷を非破壊で検出可能(画像はSiC /SiCの引張試験中に発生した損傷例)。当部門では、損傷を明確に検出する ために、画像処理や画像からの特徴量の抽出方法に関する研究を行っています。



■ 深層学習技術の検査への応用

深層学習を用いることで、画像診断の迅速化と広範囲での構造の把握 を実現します。また、深層学習によって、表面から得られる情報を基に部 材内部での損傷の推定を行っています。


AI利用信頼性確保技術

1) AI利用のための特性表現手法 (2) AIを利用した健全性評価 (3) 新検査技術としてのIoT-AI活用

■ 有限要素法を用いた界面力学解析

CMCのように材料に異方性が存在する場合、界面近傍の応力分布は 異方性の影響を強く受けます(画像は有限要素法による異種材料界面 近傍の応力分布を計算した例)。この有限要素法を利用して、実験では 求められない応力分布の解析などを進めています。

■ AI、IoTやバーチャルテストを利用したCMC検査技術

損傷許容性を有するCMCには、従来の材料系とは異なる信頼性評価の 方法が必要です。当部門では、AIやバーチャルテストなどの先進的手法 と従来技術を併用することで、CMC特有の損傷様式を考慮した新しい 検査技術の開発をめざしています。

その他の部門

技術支援部門 Technical Support Division

CMCの研究開発を行うために必要となる試験装置の整備、新しい装置の 開発、試験評価装置のメンテナンスなどを行う部門です。CMCセンターでは、 施設・環境面からも最先端の研究開発をサポートする体制を整えています。

研究事務支援室 Administrative Office

CMCセンター内の研究活動を円滑に進行させるためのプロジェクトマネジ メントを担当する部門です。研究に必要となる物品の購入や研究経費の 管理をはじめ、CMCセンターに関する窓口業務も担っています。

The Center for Ceramic Matrix Composites